scholarly journals A Six Sigma Methodology Using Data Mining : A Case Study of "P" Steel Manufacturing Company

2011 ◽  
Vol 20 (3) ◽  
pp. 1-24 ◽  
Author(s):  
Gil-Sang Jang
2012 ◽  
Vol 622-623 ◽  
pp. 472-477
Author(s):  
Ali A. Karakhan ◽  
Angham E. Alsaffar

The aims of this study are to measure the defect rate and analyze the problems of production of ready concrete mixture plant by using Six Sigma methodology which is a business strategy for operations improvement depending basically on the application of its sub-methodology DMAIC improvement cycle and the basic statistical tools where the process sigma level of concrete production in the case study was 2.41 σ.


2004 ◽  
Vol 4 (4) ◽  
pp. 316-328 ◽  
Author(s):  
Carol J. Romanowski , ◽  
Rakesh Nagi

In variant design, the proliferation of bills of materials makes it difficult for designers to find previous designs that would aid in completing a new design task. This research presents a novel, data mining approach to forming generic bills of materials (GBOMs), entities that represent the different variants in a product family and facilitate the search for similar designs and configuration of new variants. The technical difficulties include: (i) developing families or categories for products, assemblies, and component parts; (ii) generalizing purchased parts and quantifying their similarity; (iii) performing tree union; and (iv) establishing design constraints. These challenges are met through data mining methods such as text and tree mining, a new tree union procedure, and embodying the GBOM and design constraints in constrained XML. The paper concludes with a case study, using data from a manufacturer of nurse call devices, and identifies a new research direction for data mining motivated by the domains of engineering design and information.


Significant data development has required organizations to use a tool to understand the relationships between data and make various appropriate decisions based on the information obtained. Customer segmentation and analysis of their behavior in the manufacturing and distribution industries according to the purposefulness of marketing activities and effective communication and with customers has a particular importance. Customer segmentation using data mining techniques is mainly based on the variables of recency purchase (R), frequency of purchase (F) and monetary value of purchase (M) in RFM model. In this article, using the mentioned variables, twelve customer groups related to the BTB (business to business) of a food production company, are grouped. The grouping in this study is evaluated based on the K-means algorithm and the Davies-Bouldin index. As a result, customer grouping is divided into three groups and, finally the CLV (customer lifetime value) of each cluster is calculated, and appropriate marketing strategies for each cluster have been proposed.


Sign in / Sign up

Export Citation Format

Share Document