scholarly journals Three-step optimized block backward differentiation formulae (TOBBDF) for solving stiff ordinary differential equations

2020 ◽  
Vol 13 (1) ◽  
pp. 51-57
Author(s):  
L. A. Ukpebor ◽  
E. O. Omole
Author(s):  
Pius Tumba ◽  

In this research, we developed a uniform order eleven of eight step Second derivative hybrid block backward differentiation formula for integration of stiff systems in ordinary differential equations. The single continuous formulation developed is evaluated at some grid point of x=x_(n+j),j=0,1,2,3,4,5 and6 and its first derivative was also evaluated at off-grid point x=x_(n+j),j=15/2 and grid point x=x_(n+j),j=8. The method is suitable for the solution of stiff ordinary differential equations and the accuracy and stability properties of the newly constructed method are investigated and are shown to be A-stable. Our numerical results obtained are compared with the theoretical solutions as well as ODE23 solver.


2014 ◽  
Vol 07 (01) ◽  
pp. 1350034 ◽  
Author(s):  
M. B. Suleiman ◽  
H. Musa ◽  
F. Ismail ◽  
N. Senu ◽  
Z. B. Ibrahim

A superclass of block backward differentiation formula (BBDF) suitable for solving stiff ordinary differential equations is developed. The method is of order 3, with smaller error constant than the conventional BBDF. It is A-stable and generates two points at each step of the integration. A comparison is made between the new method, the 2-point block backward differentiation formula (2BBDF) and 1-point backward differentiation formula (1BDF). The numerical results show that the method developed outperformed the 2BBDF and 1BDF methods in terms of accuracy. It also reduces the integration steps when compared with the 1BDF method.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1342 ◽  
Author(s):  
Hazizah Mohd Ijam ◽  
Zarina Bibi Ibrahim

This paper aims to select the best value of the parameter ρ from a general set of linear multistep formulae which have the potential for efficient implementation. The ρ -Diagonally Implicit Block Backward Differentiation Formula ( ρ -DIBBDF) was proposed to approximate the solution for stiff Ordinary Differential Equations (ODEs) to achieve the research objective. The selection of ρ for optimal stability properties in terms of zero stability, absolute stability, error constant and convergence are discussed. In the diagonally implicit formula that uses a lower triangular matrix with identical diagonal entries, allowing a maximum of one lower-upper (LU) decomposition per integration stage to be performed will result in substantial computing benefits to the user. The numerical results and plots of accuracy indicate that the ρ -DIBBDF method performs better than the existing fully and diagonally Block Backward Differentiation Formula (BBDF) methods.


Sign in / Sign up

Export Citation Format

Share Document