scholarly journals On the Nutrient distribution and phytoplankton biomass in the Gulf of Guinea equatorial band as inferred from In-situ measurements

2016 ◽  
Vol 7 (1) ◽  
pp. 1-11 ◽  
Author(s):  
O A Nubi ◽  
B Bourl egrave s ◽  
C A Edokpayi ◽  
M N Hounkonnou
Author(s):  
Garegin Tepanosayn ◽  
Vahagn Muradyan ◽  
Azatuhi Hovsepyan ◽  
Lilit Minasyan ◽  
Shushanik Asmaryan

Abstract The Sevan is one of the world’s largest highland lakes and the largest drinking water reservoir to the South Caucasus. An intensive drop in the level of the lake that occurred over the last decades of the 20th century has brought to eutrophication. The 2000s were marked by an increase in the level of the lake and development of fish farming. To assess possible effect of these processes on water quality, creating a state-ofthe- art water quality monitoring system is required. Traditional approaches to monitoring aquatic systems are often time-consuming, expensive and non-continuous. Thus, remote sensing technologies are crucial in quantitatively monitoring the status of water quality due to the rapidity, cyclicity, large-scale and low-cost. The aim of this work was to evaluate potential applications of the Landsat 8 Operational Land Imager (OLI) to study the spatio-temporal phytoplankton biomass changes. In this study phytoplankton biomasses are used as a water quality indicator, because phytoplankton communities are sensitive to changes in their environment and directly correlated with eutrophication. We used Landsat 8 OLI (30 m spatial resolution, May, Aug, Sep 2016) images converted to the bottom of atmosphere (BOA) reflectance by performing standard preprocessing steps (radiometric and atmospheric correction, sun glint removal etc.). The nonlinear regression model was developed using Landsat 8 (May 2016) coastal blue, blue, green, red, NIR bands, their ratios (blue/red, red/green, red/blue etc.) and in situ measurements (R2=0.7, p<0.05) performed by the Scientific Center of Zoology and Hydroecology of NAS RA in May 2016. Model was applied to the OLI images received for August and September 2016. The data obtained through the model shows that in May the quantity of phytoplankton mostly varies from 0.2 to 0.6g/m3. In August vs. May a sharp increase in the quantity of phytoplankton around 1-5 g/m3 is observable. In September, very high contents of phytoplankton are observed for almost entire surface of the lake. Preliminary collation between data generated with help of the model and in-situ measurements allows to conclude that the RS model for phytoplankton biomass estimation showed reasonable results, but further validation is necessary.


2019 ◽  
Author(s):  
Michael Stukel ◽  
Thomas Kelly

Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon:thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U-234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.


2013 ◽  
Vol 24 (3) ◽  
pp. 147
Author(s):  
Ming LI ◽  
Qinghua YANG ◽  
Jiechen ZHAO ◽  
Lin ZHANG ◽  
Chunhua LI ◽  
...  

1995 ◽  
Vol 31 (7) ◽  
pp. 51-59 ◽  
Author(s):  
Ian Guymer ◽  
Rob O'Brien

Previously, the design of sewer systems has been limited to studies of their hydraulic characteristics, in particular the ability of the system to convey the maximum discharge. Greater environmental awareness has necessitated that new designs, and some existing schemes, are assessed to determine the environmental load which the scheme will deliver to any downstream component. This paper describes a laboratory programme which has been designed to elucidate the effects of manholes on the longitudinal dispersion of solutes. A laboratory system is described, which allows in situ measurements to be taken of the concentration of a fluorescent solute tracer, both up- and down-stream of a surcharged manhole junction. Results are presented from a preliminary series of studies undertaken for a single manhole geometry over a range of discharges, with varying levels of surcharge. Results are presented showing the variation of travel time, change in second moment of the distribution and of a dispersion factor with surcharge, assuming a Taylor approach and determining the dispersion factor using a ‘change in moment’ method. The effect of the stored volume within the manhole is clearly evident. The limitations and the applicability of this approach are discussed.


Sign in / Sign up

Export Citation Format

Share Document