scholarly journals A New Class of Optimal Eighth Order Method with Two Weight Functions for Solving Nonlinear Equation

2018 ◽  
Vol 2018 (2) ◽  
pp. 83-94
Author(s):  
Parimala S ◽  
Kalyanasundaram Madhu ◽  
Jayakumar Jayaraman
Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 942 ◽  
Author(s):  
Prem B. Chand ◽  
Francisco I. Chicharro ◽  
Neus Garrido ◽  
Pankaj Jain

In this paper, using the idea of weight functions on the Potra–Pták method, an optimal fourth order method, a non optimal sixth order method, and a family of optimal eighth order methods are proposed. These methods are tested on some numerical examples, and the results are compared with some known methods of the corresponding order. It is proved that the results obtained from the proposed methods are compatible with other methods. The proposed methods are tested on some problems related to engineering and science. Furthermore, applying these methods on quadratic and cubic polynomials, their stability is analyzed by means of their basins of attraction.


2018 ◽  
Vol 13 (02) ◽  
pp. 2050048
Author(s):  
Ioannis K. Argyros ◽  
Munish Kansal ◽  
V. Kanwar

We present a local convergence analysis of an optimal eighth-order family of Ostrowski like methods for approximating a locally unique solution of a nonlinear equation. Earlier studies [T. Lotfi, S. Sharifi, M. Salimi and S. Siegmund, A new class of three-point methods with optimal convergence and its dynamics, Numer. Algorithms 68 (2015) 261–288.] have shown convergence of these methods under hypotheses up to the eighth derivative of the function although only the first derivative appears in the method. In this study, we expand the applicability of these methods using only hypotheses up to the first derivative of the function. By this way the applicability of these methods is extended under weaker hypotheses. Moreover, the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.


2020 ◽  
Author(s):  
Kalyanasundaram Madhu ◽  
Mo'tassem Al-arydah

Abstract The foremost objective of this work is to propose a eighth and sixteenth order scheme for handling a nonlinear equation. The eighth order method uses three evaluations of the function and one assessment of the first derivative and sixteenth order method uses four evaluations of the function and one appraisal of the first derivative. Kung-Traub conjecture is satisfied, theoretical analysis of the methods are presented and numerical examples are added to confirm the order of convergence. The performance and efficiency of our iteration methods are compared with the equivalent existing methods on some standard academic problems. We tested projectile motion problem, Planck’s radiation law problem as an application. The basins of attraction are also given to demonstrate their dynamical behavior in the complex plane. Further, we attempt to proposed a sixteenth order iterative method for solving system of nonlinear equation with four functional evaluation, namely two F and two F 0 and only one inverse of Jacobian. The theoretical proof of the method is given and numerical examples are included to confirm the convergence order of the presented methods. We apply the new scheme to find solution on 1-D bratu problem. The performance and efficiency of our iteration methods are compared.


Algorithms ◽  
2015 ◽  
Vol 8 (3) ◽  
pp. 645-655 ◽  
Author(s):  
Ioannis Argyros ◽  
Ramandeep Behl ◽  
S.S. Motsa

Author(s):  
Sergey I. Mitrokhin

The boundary-value problem for an eighth-order differential operator whose potential is a piecewise continuous function on the segment of the operator definition is studied. The weight function is piecewise constant. At the discontinuity points of the operator coefficients, the conditions of "conjugation" must be satislied which follow from physical considerations. The boundary conditions of the studied boundary value problem are separated and depend on several parameters. Thus, we simultaneously study the spectral properties of entire family of differential operators with discontinuous coefficients. The asymptotic behavior of the solutions of differential equations defining the operator is obtained for large values of the spectral parameter. Using these asymptotic expansions, the conditions of "conjugation" are investigated; as a result, the boundary conditions are studied. The equation on eigenvalues of the investigated boundary value problem is obtained. It is shown that the eigenvalues are the roots of some entire function. The indicator diagram of the eigenvalue equation is investigated. The asymptotic behavior of the eigenvalues in various sectors of the indicator diagram is found.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 322 ◽  
Author(s):  
Yanlin Tao ◽  
Kalyanasundaram Madhu

The principal objective of this work is to propose a fourth, eighth and sixteenth order scheme for solving a nonlinear equation. In terms of computational cost, per iteration, the fourth order method uses two evaluations of the function and one evaluation of the first derivative; the eighth order method uses three evaluations of the function and one evaluation of the first derivative; and sixteenth order method uses four evaluations of the function and one evaluation of the first derivative. So these all the methods have satisfied the Kung-Traub optimality conjecture. In addition, the theoretical convergence properties of our schemes are fully explored with the help of the main theorem that demonstrates the convergence order. The performance and effectiveness of our optimal iteration functions are compared with the existing competitors on some standard academic problems. The conjugacy maps of the presented method and other existing eighth order methods are discussed, and their basins of attraction are also given to demonstrate their dynamical behavior in the complex plane. We apply the new scheme to find the optimal launch angle in a projectile motion problem and Planck’s radiation law problem as an application.


Mathematics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 28 ◽  
Author(s):  
Deepak Kumar ◽  
Ioannis Argyros ◽  
Janak Sharma

Higher-order derivatives are used to determine the convergence order of iterative methods. However, such derivatives are not present in the formulas. Therefore, the assumptions on the higher-order derivatives of the function restrict the applicability of methods. Our convergence analysis of an eighth-order method uses only the derivative of order one. The convergence results so obtained are applied to some real problems, which arise in science and engineering. Finally, stability of the method is checked through complex geometry shown by drawing basins of attraction of the solutions.


2017 ◽  
Vol 51 (1) ◽  
pp. 1-14
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

We present a local convergence analysis for a family of Steffensen-type third-order methods in order to approximate a solution of a nonlinear equation. We use hypothesis up to the first derivative in contrast to earlier studies such as [2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] using hypotheses up to the fourth derivative. This way the applicability of these methods is extended under weaker hypothesis. Moreover the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.


2018 ◽  
Vol 14 (2) ◽  
pp. 7631-7639
Author(s):  
Rajinder Thukral

There are two aims of this paper, firstly, we present an improvement of the classical Simpson third-order method for finding zeros a nonlinear equation and secondly, we introduce a new formula for approximating second-order derivative. The new Simpson-type method is shown to converge of the order four.  Per iteration the new method requires same amount of evaluations of the function and therefore the new method has an efficiency index better than the classical Simpson method.  We examine the effectiveness of the new fourth-order Simpson-type method by approximating the simple root of a given nonlinear equation. Numerical comparisons is made with classical Simpson method to show the performance of the presented method.


Sign in / Sign up

Export Citation Format

Share Document