scholarly journals Local Convergence of an Optimal Eighth Order Method under Weak Conditions

Algorithms ◽  
2015 ◽  
Vol 8 (3) ◽  
pp. 645-655 ◽  
Author(s):  
Ioannis Argyros ◽  
Ramandeep Behl ◽  
S.S. Motsa
Algorithms ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 25
Author(s):  
Janak Raj Sharma ◽  
Sunil Kumar ◽  
Ioannis K. Argyros

We discuss the local convergence of a derivative-free eighth order method in a Banach space setting. The present study provides the radius of convergence and bounds on errors under the hypothesis based on the first Fréchet-derivative only. The approaches of using Taylor expansions, containing higher order derivatives, do not provide such estimates since the derivatives may be nonexistent or costly to compute. By using only first derivative, the method can be applied to a wider class of functions and hence its applications are expanded. Numerical experiments show that the present results are applicable to the cases wherein previous results cannot be applied.


Author(s):  
Ioannis K. Argyros ◽  
Munish Kansal ◽  
V. Kanwar

Abstract We present a local convergence analysis of an eighth-order method for approximating a locally unique solution of a non-linear equation. Earlier studies such as have shown convergence of these methods under hypotheses up to the seventh derivative of the function although only the first derivative appears in the method. In this study, we expand the applicability of these methods using only hypotheses up to the first derivative of the function. This way the applicability of these methods is extended under weaker hypotheses. Moreover, the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.


2019 ◽  
Vol 8 (1) ◽  
pp. 74-79
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

AbstractThe aim of this study is to extend the applicability of an eighth convergence order method from thek−dimensional Euclidean space to a Banach space setting. We use hypotheses only on the first derivative to show the local convergence of the method. Earlier studies use hypotheses up to the eighth derivative although only the first derivative and a divided difference of order one appear in the method. Moreover, we provide computable error bounds based on Lipschitz-type functions.


2020 ◽  
Vol 58 (4) ◽  
pp. 841-853
Author(s):  
Ali Saleh Alshomrani ◽  
Ramandeep Behl ◽  
P. Maroju

Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 322 ◽  
Author(s):  
Yanlin Tao ◽  
Kalyanasundaram Madhu

The principal objective of this work is to propose a fourth, eighth and sixteenth order scheme for solving a nonlinear equation. In terms of computational cost, per iteration, the fourth order method uses two evaluations of the function and one evaluation of the first derivative; the eighth order method uses three evaluations of the function and one evaluation of the first derivative; and sixteenth order method uses four evaluations of the function and one evaluation of the first derivative. So these all the methods have satisfied the Kung-Traub optimality conjecture. In addition, the theoretical convergence properties of our schemes are fully explored with the help of the main theorem that demonstrates the convergence order. The performance and effectiveness of our optimal iteration functions are compared with the existing competitors on some standard academic problems. The conjugacy maps of the presented method and other existing eighth order methods are discussed, and their basins of attraction are also given to demonstrate their dynamical behavior in the complex plane. We apply the new scheme to find the optimal launch angle in a projectile motion problem and Planck’s radiation law problem as an application.


Mathematics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 28 ◽  
Author(s):  
Deepak Kumar ◽  
Ioannis Argyros ◽  
Janak Sharma

Higher-order derivatives are used to determine the convergence order of iterative methods. However, such derivatives are not present in the formulas. Therefore, the assumptions on the higher-order derivatives of the function restrict the applicability of methods. Our convergence analysis of an eighth-order method uses only the derivative of order one. The convergence results so obtained are applied to some real problems, which arise in science and engineering. Finally, stability of the method is checked through complex geometry shown by drawing basins of attraction of the solutions.


2019 ◽  
Vol 17 (05) ◽  
pp. 1940017
Author(s):  
Ali Saleh Alshomrani ◽  
Ioannis K. Argyros ◽  
Ramandeep Behl

Our principle aim in this paper is to present a new reconstruction of classical Chebyshev–Halley schemes having optimal fourth and eighth-order of convergence for all parameters [Formula: see text] unlike in the earlier studies. In addition, we analyze the local convergence of them by using hypotheses requiring the first-order derivative of the involved function [Formula: see text] and the Lipschitz conditions. In addition, we also formulate their theoretical radius of convergence. Several numerical examples originated from real life problems demonstrate that they are applicable to a broad range of scalar equations, where previous studies cannot be used. Finally, a dynamical study of them also demonstrates that bigger and more promising basins of attractions are obtained.


Algorithms ◽  
2015 ◽  
Vol 8 (4) ◽  
pp. 1076-1087 ◽  
Author(s):  
Ioannis Argyros ◽  
Ramandeep Behl ◽  
S.S. Motsa

Sign in / Sign up

Export Citation Format

Share Document