scholarly journals INFLUENCE OF SETTLING VELOCITY OF PARTICULATE MATTER ON GROUND LEVEL CONCENTRATIONS

2016 ◽  
Vol 38 ◽  
pp. 560 ◽  
Author(s):  
Tiziano Tirabassi ◽  
Davidson Martin Moreira

The settling velocity and deposition of particulate matter on the earth's surface has been introduced in an analytical solution of advection-diffusion equation. The influence of particle diameters in ground level concentration distribution was investigated in function of different atmospheric stability condiyions 

2018 ◽  
Vol 40 ◽  
pp. 69
Author(s):  
Tiziano Tirabassi ◽  
Daniela Buske

After setting realistic scenarios of the wind and diffusivity parameterizations the Ground Level Concentration is worked out by an analytical solution of the advection-diffusion equation, then an explicit approximate expression is provided for it allowing a simple expression for the position and value of the maximum.


2019 ◽  
Vol 396 ◽  
pp. 91-98 ◽  
Author(s):  
Régis S. Quadros ◽  
Glênio A. Gonçalves ◽  
Daniela Buske ◽  
Guilherme J. Weymar

This work presents an analytical solution for the transient three-dimensional advection-diffusion equation to simulate the dispersion of pollutants in the atmosphere. The solution of the advection-diffusion equation is obtained analytically using a combination of the methods of separation of variables and GILTT. The main advantage is that the presented solution avoids a numerical inversion carried out in previous works of the literature, being by this way a totally analytical solution, less than a summation truncation. Initial numerical simulations and statistical comparisons using data from the Copenhagen experiment are presented and prove the good performance of the model.


MAUSAM ◽  
2021 ◽  
Vol 64 (4) ◽  
pp. 655-662
Author(s):  
M.ABDEL WAHAB ◽  
KHALED SMESSA ◽  
M. EMBABY ◽  
SAWSAN EMELSAID

bl 'kks/k i= esa fu"izHkkoh vkSj vfLFkj fLFkfr;ksa esa ØkWliou lekdfyr lkanz.k ysus ds fy, nks fn’kkvksa esa vfHkogu folj.k lehdj.k ¼ADE½ dks gy fd;k x;k gSA ykIykl :ikarj.k rduhd dk mi;ksx rFkk m/okZ/kj Å¡pkbZ ij vk/kkfjr iou xfr vkSj Hkaoj folj.k’khyrk dh leh{kk djrs gq, ;g gy fudkyk x;k gSA blds lkFk gh Hkw&Lrj  vkSj vf/kdre lkanz.kksa dk Hkh vkdyu fd;k x;k gSA geus bl ekWMy esa iwokZuqekfur vkSj izsf{kr lkanz.k vk¡dM+ksa ds e/; rqyuk djus ds fy, dksiugsxu ¼MsuekdZ½ ls fy, x, vkuqHkfod vk¡dM+ksa dk mi;ksx fd;k gSA  The advection diffusion equation (ADE) is solved in two directions to obtain the crosswind integrated concentration in neutral and unstable conditions. The solution is solved using Laplace transformation technique and considering the wind speed and eddy diffusivity depending on the vertical height. Also the ground level and maximum concentrations are estimated. We use in this model empirical data from Copenhagen (Denmark) to compare between predicted and observed concentration data.


Sign in / Sign up

Export Citation Format

Share Document