HUMAN COGNITION INSPIRED PROCEDURES FOR PART FAMILY FORMATION BASED ON NOVEL INSPECTION BASED CLUSTERING APPROACH

10.6036/9997 ◽  
2021 ◽  
Vol 96 (5) ◽  
pp. 546-552
Author(s):  
NAGA-SAI-RAM GOPISETTI ◽  
MARIA LEONILDE ROCHA VARELA ◽  
JOSE MACHADO

Human cognition based procedures are promising approaches for solving different kind of problems, and this paper addresses the part family formation problem inspired by a human cognition procedure through a graph-based approach, drawing on pattern recognition. There are many algorithms which consider nature inspired models for solving a broad range of problem types. However, there is a noticeable existence of a gap in implementing models based on human cognition, which are generally characterized by “visual thinking”, rather than complex mathematical models. Hence, the natural power of reasoning - by detecting the patterns that mimic the natural human cognition - is used in this study as this paper is based on the partial implementation of graph theory in modelling and solving issues related to part machine grouping, regardless of their size. The obtained results have shown that most of the problems solved by using the proposed approach have provided interesting benchmark results when compared with previous results given by GRASP (Greedy Randomized Adaptive Search Procedure) heuristics. Keywords: Cellular manufacturing systems; part family formation; human cognition; inspection-based clustering.

1992 ◽  
Vol 114 (3) ◽  
pp. 352-361 ◽  
Author(s):  
S. A. Irani ◽  
P. H. Cohen ◽  
T. M. Cavalier

This paper describes a method for layout design of a Cellular Manufacturing System (CMS) that would allow simultaneously, the grouping of machines unique to a part family into cells and those shared by several cells to be located together in functional sections. Using an illustrative example, this integration of the flexibility of a functional layout, the reduced handling gained from cell formation and allowance of limited intercell flows among adjacent cells is described. Thereby, the traditional strategy of simultaneous formation of part families and distribution of machines into independent cells which creates machine distribution and unbalanced utilization problems is avoided. This is justified by an analysis of the complex interactions between the critical subproblems in cell formation—machine grouping, part family formation, distribution and utilization of shared machines, intracell layout, intercell (or shop) layout and material handling. This approach represents a new direction in cell formation where, by allowing the handling function to limit the extent of machine duplication between adjacent cells, a new graph theoretic structure for simultaneous machine grouping and layout design was developed and validated.


Author(s):  
Amin Rezaeipanah ◽  
Musa Mojarad

This paper presents a new, bi-criteria mixed-integer programming model for scheduling cells and pieces within each cell in a manufacturing cellular system. The objective of this model is to minimize the makespan and inter-cell movements simultaneously, while considering sequence-dependent cell setup times. In the CMS design and planning, three main steps must be considered, namely cell formation (i.e., piece families and machine grouping), inter and intra-cell layouts, and scheduling issue. Due to the fact that the Cellular Manufacturing Systems (CMS) problem is NP-Hard, a Genetic Algorithm (GA) as an efficient meta-heuristic method is proposed to solve such a hard problem. Finally, a number of test problems are solved to show the efficiency of the proposed GA and the related computational results are compared with the results obtained by the use of an optimization tool.


Sign in / Sign up

Export Citation Format

Share Document