scholarly journals Modeling of Erosive Burning for Fluid-Structure Integration Analysis of Solid Rocket Motor

2016 ◽  
Vol 20 (4) ◽  
pp. 9-18
Author(s):  
Jeongsub Lee ◽  
Jungkun Jin ◽  
Shinhoe Kim ◽  
Gyoodong Jung
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yanjie Ma ◽  
Futing Bao ◽  
Lin Sun ◽  
Yang Liu ◽  
Weihua Hui

Erosive burning refers to the augmentation of propellant burning rate appears when the velocity of combustion gas flowing parallel to the propellant surface is relatively high. Erosive burning can influence the total burning rate of propellant and performance of solid rocket motors dramatically. There have been many different models to evaluate erosive burning rate for now. Yet, due to the complication processes involving in propellant and solid rocket motor combustion, unknown constants often exist in these models. To use these models, trial-and-error procedure must be implemented to determine the unknown constants firstly. This makes many models difficult to estimate erosive burning before plenty of experiments. In this paper, a new erosive burning rate model is proposed based on the assumption that the erosive burning rate is proportional to the heat flux at the propellant surface. With entrance effect, roughness, and transpiration considered, convective heat transfer coefficient correlation proposed in recent years is used to compute the heat flux. This allows the release of unknown constants, making the model universal and easy to implement. The computational data of the model are compared with different experimental and computational data from different models. Results show that good accuracy (10%) with experiments can be achieved by this model. It is concluded that the present model could be used universally for erosive burning rate evaluation of propellant and performance prediction of solid rocket motor as well.


2012 ◽  
Vol 184-185 ◽  
pp. 328-332
Author(s):  
Jing Wu ◽  
Xiong Chen ◽  
Xi Yu

During the start-up of ignition process, the solid rocket motor is typically involved in fluid-structure coupling process. The propellant deforms under the gas pressure, thereby influents the gas flow in turn. The aim of this paper is to investigate the coupled effect between fluid and structure during the start-up of ignition process in solid rocket motor by coupling Fluent and Abaqus via MpCCI. The numerical result shows that during the initial stage, the gas flows onto the structural surface. There is a relative enclosure space in thewing slot inside the motor, which causes big deformation on propellant grain and stress reliever. This space is the high-risk area for structural deboning in solid rocket motor.


2021 ◽  
Author(s):  
Giovanni Montesano

A study of the numerical modeling and prediction of nonlinear unsteady combustion instability within the combustion chamber of a solid rocket motor (SRM) is the main objective. The numerical model consists of a three-dimensional finite-element representation of a cylindrical-grain motor, coupled to a quasi-one-dimensional internal ballistic flow (IBF) model, where a quasi-steady rapid kinetic rate burning rate algorithm is used to model the propellant combustion and regression. Fluid-structure-combustion interaction subroutines are also employed to control the simulated motor firings and the data transferred between the fluid, structure and burning rate model components. Results illustrating the significant effects of structural vibrations on the burning rate and consequently the IBF are shown and compared to experimental data. Modeling considerations are illustrated, giving insight into the physical phenomena of SRM combustion instability.


2012 ◽  
Vol 452-453 ◽  
pp. 1346-1350
Author(s):  
Shuang Wu Gao ◽  
Hong Fu Qiang ◽  
Wei Zhou ◽  
Peng Peng Wu

The coupled influence between structure and internal flow field will make the pressure oscillation during working process of the solid rocket motor. This coupled effect will bring the dynamic press on the payload and extremely destroyed the payload. For researching the influence of internal flow field by the deformation of inhibitor, the parallel fluid structure interaction method with the large eddy simulation model was used to analyze the solid rocket motor with segments. The results show that the deformation of inhibitor will influence the internal flow field parameter’s distribution and enhance the pressure frequency and amplitude remarkably. The partitioned method could solution the fluid structure interaction problems in the segmented solid rocket motor properly.


Sign in / Sign up

Export Citation Format

Share Document