Whole-body Cancer Screening Using 18F-FDG Novel Combined PET/CT Scanner

2005 ◽  
Vol 32 (4) ◽  
pp. 370-375
Author(s):  
Chieki WADA ◽  
Tomoo SHIMADA ◽  
Yasuko ADACHI
2005 ◽  
Vol 26 (3) ◽  
pp. 286
Author(s):  
K.J. Carson ◽  
J.C. Clarke ◽  
C. Constable ◽  
P.H. Jarritt
Keyword(s):  
Fdg Pet ◽  
Pet Ct ◽  

2021 ◽  
Vol 41 (01) ◽  
pp. 042-047
Author(s):  
Marc Blondon

AbstractActive cancer causes approximately 25% of all acute events of venous thromboembolism (VTE). While most of the cancer diagnoses are known or clinically apparent at the time of VTE, care providers and patients may be worried about the 3 to 8% risk of occult cancer occurring in the year after VTE. Several studies have compared limited to extensive cancer screening after acute VTE, especially with the addition of abdominal computed tomography (CT) or whole-body PET-CT, with the hope to shorten the time to cancer diagnosis and lead to less advanced cancer stages. These studies have not shown improved clinical outcomes with an extensive screening, and have led to current recommendations of limited screening for cancer in patients with acute VTE, including unprovoked cases. Several risk assessment models have been developed to identify patients at greatest risk of occult cancer, however, with low discriminative performances and no current clinical usefulness. Some clinical situations may empirically deserve a more thorough cancer screening, such as unprovoked upper extremity deep vein thrombosis (DVT), bilateral leg DVT, descending leg DVT, or recurrent VTE during anticoagulation.


2013 ◽  
Vol 34 (6) ◽  
pp. 540-543 ◽  
Author(s):  
Kuruva Manohar ◽  
Anish Bhattacharya ◽  
Bhagwant R. Mittal
Keyword(s):  
Fdg Pet ◽  
Pet Ct ◽  
18F Fdg ◽  

Author(s):  
Olwen Westerland ◽  
◽  
Ashik Amlani ◽  
Christian Kelly-Morland ◽  
Michal Fraczek ◽  
...  

Abstract Purpose Comparative data on the impact of imaging on management is lacking for multiple myeloma. This study compared the diagnostic performance and impact on management of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and whole-body magnetic resonance imaging (WBMRI) in treatment-naive myeloma. Methods Forty-six patients undergoing 18F-FDG PET/CT and WBMRI were reviewed by a nuclear medicine physician and radiologist, respectively, for the presence of myeloma bone disease. Blinded clinical and imaging data were reviewed by two haematologists in consensus and management recorded following clinical data ± 18F-FDG PET/CT or WBMRI. Bone disease was defined using International Myeloma Working Group (IMWG) criteria and a clinical reference standard. Per-patient sensitivity for lesion detection was established. McNemar test compared management based on clinical assessment ± 18F-FDG PET/CT or WBMRI. Results Sensitivity for bone lesions was 69.6% (32/46) for 18F-FDG PET/CT (54.3% (25/46) for PET component alone) and 91.3% (42/46) for WBMRI. 27/46 (58.7%) of cases were concordant. In 19/46 patients (41.3%) WBMRI detected more focal bone lesions than 18F-FDG PET/CT. Based on clinical data alone, 32/46 (69.6%) patients would have been treated. Addition of 18F-FDG PET/CT to clinical data increased this to 40/46 (87.0%) patients (p = 0.02); and WBMRI to clinical data to 43/46 (93.5%) patients (p = 0.002). The difference in treatment decisions was not statistically significant between 18F-FDG PET/CT and WBMRI (p = 0.08). Conclusion Compared to 18F-FDG PET/CT, WBMRI had a higher per patient sensitivity for bone disease. However, treatment decisions were not statistically different and either modality would be appropriate in initial staging, depending on local availability and expertise.


2021 ◽  
Vol 5 (1) ◽  
pp. 1151-1160
Author(s):  
A.S. Lukashevich ◽  

Purpose. The purpose of the article is to evaluate the diagnostic significance of positron emission tomography / computed tomography with 18F -fluorodeoxyglucose (18F -FDG PET/CT) for the diagnosis of prosthetic endocarditis. Methods of research. The study included 82 patients with suspected prosthetic endocarditis in accordance with the criteria proposed by Duke University [1-5]. The patients received hospital treatment at the State Institution RSPC "Cardiology" from January 2016 to March 2021. The study was of a prospective, non-randomized, single-center cohort design. The duration of the monitor period was 12 months from the moment of patients’ inclusion in the study. Whole-body positron emission tomography / computed tomography (PET/CT) examinations were performed in 82 patients. 27 patients were selected for surgical treatment. Conservative treatment group included 16 patients. 27 patients were selected into the observation group, they were suspected to have prosthetic heart valve infection in the primary referral and underwent PET/CT scanning, according to which the diagnosis of prosthetic endocarditis was excluded. The event under the study did not develop in this group during the year of observation. Results and conclusion. The history of infective endocarditis was not statistically significant and did not increase the risk of developing prosthetic endocarditis in the sample presented. The Duke criteria are less reliable in establishing the diagnosis of prosthetic endocarditis. The median number of days from the date of the first prosthesis implantation to the onset of prosthetic endocarditis was about 4 years. This study revealed that the development of the infectious process in the area of the prosthesis was noted in a more distant postoperative period compared to literature data. Histological confirmation of infection was noted in 100% (27 patients) of cases in reoperated patients. The presence of a more formidable complication such as valve ring abscess located mainly in the projection of the aortic valve ring was quite common in both groups. Presepsin and Interleukin-6 have a statistically significant (U = 394,50 p = 0,01 and U = 94,50 p = 0.004) value in the prognosis of prosthetic endocarditis. Considering the data obtained from ROC analysis, it can be said that the cut-off point at which it is possible to diagnose prosthetic endocarditis based on PETCT is 2.85. The presented methods for the interpretation of whole-body FDG-PET/CT images of patients with suspected infectious complications after cardiac surgery, as well as with the presence of prosthetic endocarditis, show high sensitivity and specificity.


Author(s):  
Almalki Yassir

Abstract Background Leydig cell tumors (LCTs) represent the most common form of stromal tumors. We reported the 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) findings of a patient with testicular LCT. Case presentation A 50-year-old man with a history of end-stage renal disease and renal transplantation 19 years ago. One year earlier, he started to have a chronic rejection. During the investigation to determine the cause of chronic rejection, a suspicious lesion in the graft with a collection around it was seen on ultrasound (US) images, raising the possibility of post-transplant lymphoproliferative disorder (PTLD). The patient was referred for further evaluation by whole body 18F-FDG PET/CT imaging. The image finding revealed an incidental hypermetabolic focal lesion in the right testicle—no other specific findings in the remaining parts of the body nor definitive FDG avid lymphadenopathy to suggest PTLD. Testicular US was requested and showed a well-defined right-sided heterogeneous hypoechoic intratesticular focal mass at the upper pole of the right testis with significant internal vascularity on the color Doppler imaging. The patient underwent a right radical orchidectomy, and the tumor was pathologically confirmed as an LCT. Conclusion In our case, 18F-FDG-PET/CT has been helpful in incidentally detecting this rare testicular tumor in a patient with suspected PTLD.


Author(s):  
C.E. Owen ◽  
A.M. Poon ◽  
L.P. Yap ◽  
J.L. Leung ◽  
D.F. Liew ◽  
...  

2021 ◽  
Author(s):  
Shuailiang Wang ◽  
Xin Zhou ◽  
Xiaoxia Xu ◽  
Jin Ding ◽  
Song Liu ◽  
...  

Abstract PurposeIn this study, a novel Al18F-NOTA-FAPI probe was developed for fibroblast activation protein (FAP) targeted tumour imaging, which was available to achieve curie level radioactivity by automatic synthesizer. The tumour detection efficacy of Al18F-NOTA-FAPI was further validated both in preclinical and clinical translational studies. MethodsThe radiolabeling procedure of Al18F-NOTA-FAPI was optimized. Cell uptake and competitive binding assay were completed with U87MG and A549 cell lines, to evaluate the affinity and specificity of Al18F-NOTA-FAPI probe. The biodistribution, pharmacokinetics, radiation dosimetry and tumour imaging efficacy of Al18F-NOTA-FAPI probe were researched with healthy Kunming (KM) and/or U87MG model mice. After the approval of ethical committee, Al18F-NOTA-FAPI probe was translated into clinical for the PET/CT imaging of first 10 cancer patients. ResultsThe radiolabeling yield of Al18F-NOTA-FAPI was 33.8 ± 3.2% through manually operation (n = 10), with the radiochemical purity over than 99% and the specific activity of 9.3-55.5 MBq/nmol. Whole body effective dose of Al18F-NOTA-FAPI was estimated to be 1.24E-02 mSv/MBq, lower than several other FAPI probes ( 68Ga-FAPI-04, 68Ga-FAPI-46 and 68Ga-FAPI-74). In U87MG tumour bearing mice, Al18F-NOTA-FAPI showed good tumor detection efficacy from the results of micro PET/CT imaging and biodistribution studies. In organ biodistribution study of human patients, Al18F-NOTA-FAPI showed lower SUVmean than 2-[18F]FDG in most organs, especially in liver (1.1 ± 0.2 vs. 2.0 ± 0.9), brain (0.1 ± 0.0 vs. 5.9 ± 1.3), and bone marrow (0.9 ± 0.1 vs. 1.7 ± 0.4). Meanwhile, Al18F-NOTA-FAPI do not show extensive bone uptakes, and was able to find out more tumour lesions than 2-[18F]FDG in the PET/CT imaging of several patients. ConclusionAl18F-NOTA-FAPI probe was successfully fabricated and applied in fibroblast activation protein targeted tumour PET/CT imaging, which showed excellent imaging quality and tumour detection efficacy in U87MG tumour bearing mice as well as in human cancer patients.


2018 ◽  
Vol 56 ◽  
pp. 264
Author(s):  
F. Zito ◽  
A. D’Alessio ◽  
A. Pira ◽  
M.F. Bardo ◽  
R. Benti

Sign in / Sign up

Export Citation Format

Share Document