scholarly journals A comparison formula for residue currents

2019 ◽  
Vol 125 (1) ◽  
pp. 39-66
Author(s):  
Richard Lärkäng

Given two ideals $\mathcal {I}$ and $\mathcal {J}$ of holomorphic functions such that $\mathcal {I} \subseteq \mathcal {J}$, we describe a comparison formula relating the Andersson-Wulcan currents of $\mathcal {I}$ and $\mathcal {J}$. More generally, this comparison formula holds for residue currents associated to two generically exact Hermitian complexes together with a morphism between the complexes. One application of the comparison formula is a generalization of the transformation law for Coleff-Herrera products to Andersson-Wulcan currents of Cohen-Macaulay ideals. We also use it to give an analytic proof by means of residue currents of theorems of Hickel, Vasconcelos and Wiebe related to the Jacobian ideal of a holomorphic mapping.

Author(s):  
A. F. Beardon

AbstractThe positive solutions of the equation $$x^y = y^x$$ x y = y x have been discussed for over two centuries. Goldbach found a parametric form for the solutions, and later a connection was made with the classical Lambert function, which was also studied by Euler. Despite the attention given to the real equation $$x^y=y^x$$ x y = y x , the complex equation $$z^w = w^z$$ z w = w z has virtually been ignored in the literature. In this expository paper, we suggest that the problem should not be simply to parametrise the solutions of the equation, but to uniformize it. Explicitly, we construct a pair z(t) and w(t) of functions of a complex variable t that are holomorphic functions of t lying in some region D of the complex plane that satisfy the equation $$z(t)^{w(t)} = w(t)^{z(t)}$$ z ( t ) w ( t ) = w ( t ) z ( t ) for t in D. Moreover, when t is positive these solutions agree with those of $$x^y=y^x$$ x y = y x .


2020 ◽  
Vol 70 (3) ◽  
pp. 605-616
Author(s):  
Stanisława Kanas ◽  
Vali Soltani Masih ◽  
Ali Ebadian

AbstractWe consider a family of analytic and normalized functions that are related to the domains ℍ(s), with a right branch of a hyperbolas H(s) as a boundary. The hyperbola H(s) is given by the relation $\begin{array}{} \frac{1}{\rho}=\left( 2\cos\frac{\varphi}{s}\right)^s\quad (0 \lt s\le 1,\, |\varphi| \lt (\pi s)/2). \end{array}$ We mainly study a coefficient problem of the families of functions for which zf′/f or 1 + zf″/f′ map the unit disk onto a subset of ℍ(s) . We find coefficients bounds, solve Fekete-Szegö problem and estimate the Hankel determinant.


2019 ◽  
Vol 52 (1) ◽  
pp. 482-489 ◽  
Author(s):  
Andriy Bandura ◽  
Oleh Skaskiv ◽  
Liana Smolovyk

AbstractIn the paper we investigate slice holomorphic functions F : ℂn → ℂ having bounded L-index in a direction, i.e. these functions are entire on every slice {z0 + tb : t ∈ℂ} for an arbitrary z0 ∈ℂn and for the fixed direction b ∈ℂn \ {0}, and (∃m0 ∈ ℤ+) (∀m ∈ ℤ+) (∀z ∈ ℂn) the following inequality holds{{\left| {\partial _{\bf{b}}^mF(z)} \right|} \over {m!{L^m}(z)}} \le \mathop {\max }\limits_{0 \le k \le {m_0}} {{\left| {\partial _{\bf{b}}^kF(z)} \right|} \over {k!{L^k}(z)}},where L : ℂn → ℝ+ is a positive continuous function, {\partial _{\bf{b}}}F(z) = {d \over {dt}}F\left( {z + t{\bf{b}}} \right){|_{t = 0}},\partial _{\bf{b}}^pF = {\partial _{\bf{b}}}\left( {\partial _{\bf{b}}^{p - 1}F} \right)for p ≥ 2. Also, we consider index boundedness in the direction of slice holomorphic solutions of some partial differential equations with partial derivatives in the same direction. There are established sufficient conditions providing the boundedness of L-index in the same direction for every slie holomorphic solutions of these equations.


Sign in / Sign up

Export Citation Format

Share Document