scholarly journals Koszul property for points in projective spaces

2001 ◽  
Vol 89 (2) ◽  
pp. 201 ◽  
Author(s):  
Aldo Conca ◽  
Ngô Viêt Trung ◽  
Giuseppe Valla

A graded $K$-algebra $R$ is said to be Koszul if the minimal $R$-free graded resolution of $K$ is linear. In this paper we study the Koszul property of the homogeneous coordinate ring $R$ of a set of $s$ points in the complex projective space $\boldsymbol P^n$. Kempf proved that $R$ is Koszul if $s\leq 2n$ and the points are in general linear position. If the coordinates of the points are algebraically independent over $\boldsymbol Q$, then we prove that $R$ is Koszul if and only if $s\le 1 +n + n^2/4$. If $s\le 2n$ and the points are in linear general position, then we show that there exists a system of coordinates $x_0,\dots,x_n$ of $\boldsymbol P^n$ such that all the ideals $(x_0,x_1,\dots,x_i)$ with $0\le i \le n$ have a linear $R$-free resolution.

1973 ◽  
Vol 50 ◽  
pp. 199-216 ◽  
Author(s):  
Peter Kiernan ◽  
Shoshichi Kobayashi

In this note, we shall examine some results of Bloch [2] and Cartan [3] concerning complex projective space minus hyperplanes in general position. The purpose is to restate their results in a more general setting by using the intrinsic pseudo-distance defined on a complex space [16] and the concept of tautness introduced by Wu in [18]. In the process we shall generalize some results of Dufresnoy [4] and Fuj imoto [7].


Filomat ◽  
2021 ◽  
Vol 35 (3) ◽  
pp. 955-962
Author(s):  
Liu Yang

Motivated by Eremenko?s accomplisshment of a Picard-type theorem [Period Math Hung. 38 (1999), pp.39-42.], we study the normality of families of holomorphic mappings of several complex variables into PN(C) for moving hypersurfaces located in general position. Our results generalize and complete previous results in this area, especially the works of Dufresnoy, Tu-Li, Tu-Cao, Yang-Fang-Pang and the recent work of Ye-Shi-Pang.


2012 ◽  
Vol 62 (3) ◽  
Author(s):  
Yasuhiko Kitada

AbstractLet M 2n be a closed smooth manifold homotopy equivalent to the complex projective space ℂP(n). It is known that the first Pontrjagin class p 1(M) of M 2n has the form (n+1+24α(M))u 2 for some integer α(M) where u is a generator of H 2(M; ℤ). We prove that α(M) is even when n is even but not divisible by 64.


1973 ◽  
Vol 73 (3) ◽  
pp. 431-438 ◽  
Author(s):  
S. Feder ◽  
S. Gitler

Let CPn denote the complex projective space of complex dimension n. If k < n, CPk−1 is embedded as the (2k –1)-skeleton of CPn and we denote by , the stunted projective space, the quotient of CPn. by CPk−1.


2020 ◽  
Vol 31 (09) ◽  
pp. 2050069
Author(s):  
J. Oliver

We estimate the dimensions of the spaces of holomorphic sections of certain line bundles to give improved lower bounds on the index of complex isotropic harmonic maps to complex projective space from the sphere and torus, and in some cases from higher genus surfaces.


1966 ◽  
Vol 62 (3) ◽  
pp. 395-398
Author(s):  
R. H. F. Denniston

Introduction. It is a classical problem to construct a complex projective space, using as ‘imaginary points’ objects of some kind from the geometry of real projective space. (The various solutions to this problem have been reviewed in a book by Coolidge ((1)).) The object of the present paper is to solve the corresponding problem for n-dimensional projective spaces over two skew fields, one being a second-rank extension of the other. The method used seems not to have been published before, even in connexion with the classical problem.


2020 ◽  
Vol 17 (5) ◽  
pp. 744-747
Author(s):  
E. Khastyan ◽  
H. Shmavonyan

2003 ◽  
Vol 10 (1) ◽  
pp. 37-43
Author(s):  
E. Ballico

Abstract We consider the vanishing problem for higher cohomology groups on certain infinite-dimensional complex spaces: good branched coverings of suitable projective spaces and subvarieties with a finite free resolution in a projective space P(V ) (e.g. complete intersections or cones over finitedimensional projective spaces). In the former case we obtain the vanishing result for H 1. In the latter case the corresponding results are only conditional for sheaf cohomology because we do not have the corresponding vanishing theorem for P(V ).


2002 ◽  
Vol 66 (3) ◽  
pp. 465-475 ◽  
Author(s):  
J. Bolton ◽  
C. Scharlach ◽  
L. Vrancken

In a previous paper it was shown how to associate with a Lagrangian submanifold satisfying Chen's equality in 3-dimensional complex projective space, a minimal surface in the 5-sphere with ellipse of curvature a circle. In this paper we focus on the reverse construction.


Sign in / Sign up

Export Citation Format

Share Document