Branched Coverings and Minimal Free Resolution for Infinite-Dimensional Complex Spaces

2003 ◽  
Vol 10 (1) ◽  
pp. 37-43
Author(s):  
E. Ballico

Abstract We consider the vanishing problem for higher cohomology groups on certain infinite-dimensional complex spaces: good branched coverings of suitable projective spaces and subvarieties with a finite free resolution in a projective space P(V ) (e.g. complete intersections or cones over finitedimensional projective spaces). In the former case we obtain the vanishing result for H 1. In the latter case the corresponding results are only conditional for sheaf cohomology because we do not have the corresponding vanishing theorem for P(V ).

2006 ◽  
Vol 13 (3) ◽  
pp. 411-417
Author(s):  
Edoardo Ballico

Abstract Let 𝑋 be a smooth and connected projective curve. Assume the existence of spanned 𝐿 ∈ Pic𝑎(𝑋), 𝑅 ∈ Pic𝑏(𝑋) such that ℎ0(𝑋, 𝐿) = ℎ0(𝑋, 𝑅) = 2 and the induced map ϕ 𝐿,𝑅 : 𝑋 → 𝐏1 × 𝐏1 is birational onto its image. Here we study the following question. What can be said about the morphisms β : 𝑋 → 𝐏𝑅 induced by a complete linear system |𝐿⊗𝑢⊗𝑅⊗𝑣| for some positive 𝑢, 𝑣? We study the homogeneous ideal and the minimal free resolution of the curve β(𝑋).


2017 ◽  
Vol 69 (6) ◽  
pp. 1274-1291 ◽  
Author(s):  
Giuseppe Favacchio ◽  
Elena Guardo

AbstractA current research theme is to compare symbolic powers of an ideal I with the regular powers of I. In this paper, we focus on the case where I = IX is an ideal deûning an almost complete intersection (ACI) set of points X in ℙ1 × ℙ1. In particular, we describe a minimal free bigraded resolution of a non-arithmetically Cohen-Macaulay (also non-homogeneous) set 𝒵 of fat points whose support is an ACI, generalizing an earlier result of Cooper et al. for homogeneous sets of triple points. We call 𝒵 a fat ACI.We also show that its symbolic and ordinary powers are equal, i.e, .


2001 ◽  
Vol 89 (2) ◽  
pp. 201 ◽  
Author(s):  
Aldo Conca ◽  
Ngô Viêt Trung ◽  
Giuseppe Valla

A graded $K$-algebra $R$ is said to be Koszul if the minimal $R$-free graded resolution of $K$ is linear. In this paper we study the Koszul property of the homogeneous coordinate ring $R$ of a set of $s$ points in the complex projective space $\boldsymbol P^n$. Kempf proved that $R$ is Koszul if $s\leq 2n$ and the points are in general linear position. If the coordinates of the points are algebraically independent over $\boldsymbol Q$, then we prove that $R$ is Koszul if and only if $s\le 1 +n + n^2/4$. If $s\le 2n$ and the points are in linear general position, then we show that there exists a system of coordinates $x_0,\dots,x_n$ of $\boldsymbol P^n$ such that all the ideals $(x_0,x_1,\dots,x_i)$ with $0\le i \le n$ have a linear $R$-free resolution.


2010 ◽  
Vol 53 (1) ◽  
pp. 13-29
Author(s):  
Emmanuel Allaud ◽  
Javier Fernandez

AbstractWe prove that the infinitesimal variations of Hodge structure arising in a number of geometric situations are non-generic. In particular, we consider the case of generic hypersurfaces in complete smooth projective toric varieties, generic hypersurfaces in weighted projective spaces and generic complete intersections in projective space and show that, for sufficiently high degrees, the corresponding infinitesimal variations are non-generic.


2011 ◽  
Vol 22 (04) ◽  
pp. 515-534 ◽  
Author(s):  
IUSTIN COANDĂ

We are concerned with the problem of the stability of the syzygy bundles associated to base-point-free vector spaces of forms of the same degree d on the projective space of dimension n. We deduce directly, from M. Green's vanishing theorem for Koszul cohomology, that any such bundle is stable if its rank is sufficiently high. With a similar argument, we prove the semistability of a certain syzygy bundle on a general complete intersection of hypersurfaces of degree d in the projective space. This answers a question of H. Flenner [Comment. Math. Helv.59 (1984) 635–650]. We then give an elementary proof of H. Brenner's criterion of stability for monomial syzygy bundles, avoiding the use of Klyachko's results on toric vector bundles. We finally prove the existence of stable syzygy bundles defined by monomials of the same degree d, of any possible rank, for n at least 3. This extends the similar result proved, for n = 2, by L. Costa, P. Macias Marques and R. M. Miro-Roig [J. Pure Appl. Algebra214 (2010) 1241–1262]. The extension to the case n at least 3 has been also, independently, obtained by P. Macias Marques in his thesis [arXiv:0909.4646/math.AG (2009)].


2016 ◽  
Vol 222 (1) ◽  
pp. 186-209
Author(s):  
RYOSUKE TAKAHASHI

Let $M$ be a Fano manifold. We call a Kähler metric ${\it\omega}\in c_{1}(M)$ a Kähler–Ricci soliton if it satisfies the equation $\text{Ric}({\it\omega})-{\it\omega}=L_{V}{\it\omega}$ for some holomorphic vector field $V$ on $M$. It is known that a necessary condition for the existence of Kähler–Ricci solitons is the vanishing of the modified Futaki invariant introduced by Tian and Zhu. In a recent work of Berman and Nyström, it was generalized for (possibly singular) Fano varieties, and the notion of algebrogeometric stability of the pair $(M,V)$ was introduced. In this paper, we propose a method of computing the modified Futaki invariant for Fano complete intersections in projective spaces.


2017 ◽  
Vol 4 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Michela Zedda

Abstract In this paper we study Kähler manifolds that are strongly not relative to any projective Kähler manifold, i.e. those Kähler manifolds that do not share a Kähler submanifold with any projective Kähler manifold even when their metric is rescaled by the multiplication by a positive constant. We prove two results which highlight some relations between this property and the existence of a full Kähler immersion into the infinite dimensional complex projective space. As application we get that the 1-parameter families of Bergman-Hartogs and Fock-Bargmann-Hartogs domains are strongly not relative to projective Kähler manifolds.


Sign in / Sign up

Export Citation Format

Share Document