scholarly journals On vector bundles for a Morse decomposition of $L\mathbb{C}\mathrm{P}^n$

2017 ◽  
Vol 121 (2) ◽  
pp. 186
Author(s):  
Iver Ottosen

We give a description of the negative bundles for the energy integral on the free loop space $L\mathbb{C}\mathrm{P}^n$ in terms of circle vector bundles over projective Stiefel manifolds. We compute the mod $p$ Chern classes of the associated homotopy orbit bundles.

2013 ◽  
Vol 42 (3) ◽  
pp. 1111-1122 ◽  
Author(s):  
Indranil Biswas ◽  
Ajneet Dhillon
Keyword(s):  

1992 ◽  
Vol 114 (1) ◽  
pp. 243-243
Author(s):  
John McCleary ◽  
Dennis A. McLaughlin
Keyword(s):  

2016 ◽  
Vol 27 (10) ◽  
pp. 1650079 ◽  
Author(s):  
Laurent Manivel

We prove explicit formulas for Chern classes of tensor products of virtual vector bundles, whose coefficients are given by certain universal polynomials in the ranks of the two bundles.


2013 ◽  
Vol 112 (2) ◽  
pp. 182 ◽  
Author(s):  
Shoham Shamir

A spectral sequence for the computation of the Hochschild cohomology of a coconnective dga over a field is presented. This spectral sequence has a similar flavour to the spectral sequence presented in [7] for the computation of the loop homology of a closed orientable manifold. Using this spectral sequence we identify a class of spaces for which the Hochschild cohomology of their mod-$p$ cochain algebra is Noetherian. This implies, among other things, that for such a space the derived category of mod-$p$ chains on its loop-space carries a theory of support varieties.


1984 ◽  
pp. 47-69
Author(s):  
William Fulton
Keyword(s):  

2019 ◽  
Vol 7 ◽  
Author(s):  
A. ASOK ◽  
J. FASEL ◽  
M. J. HOPKINS

Suppose $X$ is a smooth complex algebraic variety. A necessary condition for a complex topological vector bundle on $X$ (viewed as a complex manifold) to be algebraic is that all Chern classes must be algebraic cohomology classes, that is, lie in the image of the cycle class map. We analyze the question of whether algebraicity of Chern classes is sufficient to guarantee algebraizability of complex topological vector bundles. For affine varieties of dimension ${\leqslant}3$, it is known that algebraicity of Chern classes of a vector bundle guarantees algebraizability of the vector bundle. In contrast, we show in dimension ${\geqslant}4$ that algebraicity of Chern classes is insufficient to guarantee algebraizability of vector bundles. To do this, we construct a new obstruction to algebraizability using Steenrod operations on Chow groups. By means of an explicit example, we observe that our obstruction is nontrivial in general.


1997 ◽  
Vol 7 (5) ◽  
pp. 954-969 ◽  
Author(s):  
G. Misio?ek

1976 ◽  
Vol 32 (2) ◽  
pp. 171-178 ◽  
Author(s):  
William Fulton
Keyword(s):  

Author(s):  
P. Manoharan

We verify the following three basic results on the free loop spaceLM. (1) We show that the set of all points, where the fundamental form onLMis nondegenerate, is an open subset. (2) The connections of a Fréchet bundle overLMcan be extended toS1-central extensions and, in particular, there exist natural connections on the string structures. (3) The notion of Christoffel symbols and the curvature are introduced onLMand they are described in terms of Christoffel symbols ofM.


Sign in / Sign up

Export Citation Format

Share Document