scholarly journals Fimasartan, a Novel Angiotensin-Receptor Blocker, Protects against Renal Inflammation and Fibrosis in Mice with Unilateral Ureteral Obstruction: the Possible Role of Nrf2

2015 ◽  
Vol 12 (11) ◽  
pp. 891-904 ◽  
Author(s):  
Soojeong Kim ◽  
Sung Jun Kim ◽  
Hye Eun Yoon ◽  
Sungjin Chung ◽  
Bum Soon Choi ◽  
...  
Nephron Extra ◽  
2012 ◽  
Vol 2 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Masashi Nishida ◽  
Yasuko Okumura ◽  
Tatsujiro Oka ◽  
Kentaro Toiyama ◽  
Seiichiro Ozawa ◽  
...  

2019 ◽  
Vol 316 (2) ◽  
pp. F360-F371 ◽  
Author(s):  
Selene Colon ◽  
Haiyan Luan ◽  
Yan Liu ◽  
Cameron Meyer ◽  
Leslie Gewin ◽  
...  

Renal fibrosis is the pathological hallmark of chronic kidney disease (CKD) and manifests as glomerulosclerosis and tubulointerstitial fibrosis. Reactive oxygen species contribute significantly to renal inflammation and fibrosis, but most research has focused on superoxide and hydrogen peroxide (H2O2). The animal heme peroxidases myeloperoxidase (MPO), eosinophil peroxidase (EPX), and peroxidasin (PXDN) uniquely metabolize H2O2 into highly reactive and destructive hypohalous acids, such as hypobromous and hypochlorous acid. However, the role of these peroxidases and their downstream hypohalous acids in the pathogenesis of renal fibrosis is unclear. Our study defines the contribution of MPO, EPX, and PXDN to renal inflammation and tubulointerstitial fibrosis in the murine unilateral ureteral obstruction (UUO) model. Using a nonspecific inhibitor of animal heme peroxidases and peroxidase-specific knockout mice, we find that loss of EPX or PXDN, but not MPO, reduces renal fibrosis. Furthermore, we demonstrate that eosinophils, the source of EPX, accumulate in the renal interstitium after UUO. These findings point to EPX and PXDN as potential therapeutic targets for renal fibrosis and CKD and suggest that eosinophils modulate the response to renal injury.


Sign in / Sign up

Export Citation Format

Share Document