chronic kidney disease
Recently Published Documents


TOTAL DOCUMENTS

34113
(FIVE YEARS 11975)

H-INDEX

199
(FIVE YEARS 29)

2022 ◽  
Vol 17 (3) ◽  
pp. 558-562
Author(s):  
Vilma Cadri ◽  
Elvana Rista ◽  
Florian Toti ◽  
Bahadir Celep ◽  
Sokol Shehu ◽  
...  

2022 ◽  
Vol 160 ◽  
pp. 107085
Author(s):  
Yiyi Xu ◽  
Eva M Andersson ◽  
Hanne Krage Carlsen ◽  
Peter Molnár ◽  
Susanna Gustafsson ◽  
...  

2022 ◽  
Vol 806 ◽  
pp. 150628
Author(s):  
Ze Liang ◽  
Wanzhou Wang ◽  
Chao Yang ◽  
Yueyao Wang ◽  
Jiashu Shen ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
pp. 273-279
Author(s):  
Deandra Maharani Widiatmaja ◽  
Alyaa Ulaa Dhiya Ul Haq ◽  
Dinda Dwi Purwati ◽  
Arifa Mustika

Chronic kidney disease (CKD) prevalence keeps increasing worldwide and being particular concern due to its morbidity and mortality. However, current CKD therapy are known to be economically costly and not necessarily provide better outcomes. Epigallocatechin gallate (EGCG) is one of the substances that widely studied as perspective therapeutic agents of CKD due to its anti-inflammatory, antioxidant, and enhancing mitochondrial function ability. However, the use of EGCG is limited to low bioavailability and poor pharmacokinetic profile. Encapsulation of EGCG with PLGA is expected to increase the efficacy of EGCG especially for its use as the kidney protective agent and optimize therapy of CKD. Thus, this study aims to analyze the potency of PLGA-encapsulated EGCG as the adjuvant therapy for CKD. This study was a narrative review summarizes studies related to current adjuvant therapy of CKD. EGCG has beneficial effects in reducing pro-inflammatory cytokines among chronic kidney disease. EGCG also can increase scavenging of free radicals to decrease reactive oxygen species. EGCG is known to enhance mitochondrial function and increase mitochondrial protection to prevent apoptosis in various kidney diseases. Combination of PLGA encapsulation with EGCG has a beneficial effect in improving the delivery, bioavailability, stability, and the pharmacokinetic profile of EGCG. PLGA-encapsulated EGCG also provides a better therapeutic effect on preventing and decreasing progression of kidney damage. Finally, this study concluded that combination of PLGA-encapsulated EGCG has a potency as the adjuvant therapy of CKD.


2022 ◽  
Vol 8 ◽  
Author(s):  
Momoko Matsuyama ◽  
Keiji Hirai ◽  
Hiroaki Nonaka ◽  
Moeka Ueda ◽  
Junki Morino ◽  
...  

Objective:The aim of this study was to investigate the effects of elobixibat on constipation and lipid metabolism; and determine the factors associated with the effect of elobixibat on constipation in patients with moderate to end-stage chronic kidney disease (CKD).Methods:Stool frequency and serum lipid parameters were retrospectively analyzed before and after 4 weeks of elobixibat administration in 42 patients (CKD stage G3, 6; stage G4, 9; stage G5, 9; stage G5D, 18). Relationships between the change in stool frequency after initiation of elobixibat and various clinical parameters were analyzed by using linear regression analysis.Results:Elobixibat increased stool frequency from 0.5 ± 0.4 per day to 1.1 ± 0.6 per day (p < 0.001) regardless of whether patients were undergoing dialysis, on concomitant laxatives, or were administered elobixibat before or after breakfast. Elobixibat reduced low-density lipoprotein cholesterol concentration (from 90.9 ± 37.2 mg/dL to 77.5 ± 34.8 mg/dL, p < 0.05) and increased high-density lipoprotein cholesterol concentration (from 44.9 ± 14.3 mg/dL to 57.0 ± 25.8 mg/dL, p < 0.05), but did not change triglyceride concentration. Adverse effects were observed in two patients (nausea and diarrhea). Only phosphate concentration was correlated with the change in stool frequency after initiation of elobixibat (standard coefficient = 0.321, p = 0.043).Conclusions:Elobixibat improved constipation and lipid metabolism in patients with moderate to end-stage CKD, without serious adverse events.


2022 ◽  
Vol 8 ◽  
Author(s):  
Eman Wehedy ◽  
Ibrahim F. Shatat ◽  
Souhaila Al Khodor

Chronic kidney disease (CKD) is an increasing global health burden. Current treatments for CKD include therapeutics to target factors that contribute to CKD progression, including renin–angiotensin–aldosterone system inhibitors, and drugs to control blood pressure and proteinuria control. Recently, associations between chronic disease processes and the human microbiota and its metabolites have been demonstrated. Dysbiosis—a change in the microbial diversity—has been observed in patients with CKD. The relationship between CKD and dysbiosis is bidirectional; gut-derived metabolites and toxins affect the progression of CKD, and the uremic milieu affects the microbiota. The accumulation of microbial metabolites and toxins is linked to the loss of kidney functions and increased mortality risk, yet renoprotective metabolites such as short-chain fatty acids and bile acids help restore kidney functions and increase the survival rate in CKD patients. Specific dietary interventions to alter the gut microbiome could improve clinical outcomes in patients with CKD. Low-protein and high-fiber diets increase the abundance of bacteria that produce short-chain fatty acids and anti-inflammatory bacteria. Fluctuations in the urinary microbiome are linked to increased susceptibility to infection and antibiotic resistance. In this review, we describe the potential role of the gut, urinary and blood microbiome in CKD pathophysiology and assess the feasibility of modulating the gut microbiota as a therapeutic tool for treating CKD.


Sign in / Sign up

Export Citation Format

Share Document