scholarly journals Infinitely many solutions for a class of superquadratic fractional Hamiltonian systems

2018 ◽  
pp. 309-326
Author(s):  
Mohsen Timoumi
2015 ◽  
Vol 4 (1) ◽  
pp. 59-72 ◽  
Author(s):  
Ziheng Zhang ◽  
Rong Yuan

AbstractIn this paper we are concerned with the existence of infinitely-many solutions for fractional Hamiltonian systems of the form ${\,}_tD^{\alpha }_{\infty }(_{-\infty }D^{\alpha }_{t}u(t))+L(t)u(t)=\nabla W(t,u(t))$, where ${\alpha \in (\frac{1}{2},1)}$, ${t\in \mathbb {R}}$, ${u\in \mathbb {R}^n}$, ${L\in C(\mathbb {R},\mathbb {R}^{n^2})}$ is a symmetric and positive definite matrix for all ${t\in \mathbb {R}}$, ${W\in C^1(\mathbb {R}\times \mathbb {R}^n,\mathbb {R})}$ and ${\nabla W(t,u)}$ is the gradient of ${W(t,u)}$ at u. The novelty of this paper is that, assuming L(t) is bounded in the sense that there are constants ${0<\tau _1<\tau _2< \infty }$ such that ${\tau _1 |u|^2\le (L(t)u,u)\le \tau _2 |u|^2}$ for all ${(t,u)\in \mathbb {R}\times \mathbb {R}^n}$ and ${W(t,u)}$ is of the form ${({a(t)}/({p+1}))|u|^{p+1}}$ such that ${a\in L^{\infty }(\mathbb {R},\mathbb {R})}$ can change its sign and ${0<p<1}$ is a constant, we show that the above fractional Hamiltonian systems possess infinitely-many solutions. The proof is based on the symmetric mountain pass theorem. Recent results in the literature are generalized and significantly improved.


Author(s):  
G. Amado Mendez Cruz ◽  
César E. Torres Ledesma

AbstractIn this paper, we investigate the existence of infinitely many solutions for the following fractional Hamiltonian systems:tDu ∈ Hwhere α ∈ (1/2, 1), t ∈ ℝ, u ∈ ℝm({t ∈ (y − rare satisfied and W is of subquadratic growth as |u| → +∞, we show that (0.1) possesses infinitely many solutions via the genus properties in the critical theory. Recent results in Z. Zhang and R. Yuan [24] are significantly improved.


Sign in / Sign up

Export Citation Format

Share Document