symmetric mountain pass theorem
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 0)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Qilin Xie ◽  
Huafeng Xiao

AbstractIn the present paper, we consider the following discrete Schrödinger equations $$ - \biggl(a+b\sum_{k\in \mathbf{Z}} \vert \Delta u_{k-1} \vert ^{2} \biggr) \Delta ^{2} u_{k-1}+ V_{k}u_{k}=f_{k}(u_{k}) \quad k\in \mathbf{Z}, $$ − ( a + b ∑ k ∈ Z | Δ u k − 1 | 2 ) Δ 2 u k − 1 + V k u k = f k ( u k ) k ∈ Z , where a, b are two positive constants and $V=\{V_{k}\}$ V = { V k } is a positive potential. $\Delta u_{k-1}=u_{k}-u_{k-1}$ Δ u k − 1 = u k − u k − 1 and $\Delta ^{2}=\Delta (\Delta )$ Δ 2 = Δ ( Δ ) is the one-dimensional discrete Laplacian operator. Infinitely many high-energy solutions are obtained by the Symmetric Mountain Pass Theorem when the nonlinearities $\{f_{k}\}$ { f k } satisfy 4-superlinear growth conditions. Moreover, if the nonlinearities are sublinear at infinity, we obtain infinitely many small solutions by the new version of the Symmetric Mountain Pass Theorem of Kajikiya.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Dan Liu ◽  
Xuejun Zhang ◽  
Mingliang Song

We deal with the following Sturm–Liouville boundary value problem: − P t x ′ t ′ + B t x t = λ ∇ x V t , x ,     a.e.   t ∈ 0,1 x 0 cos    α − P 0 x ′ 0 sin    α = 0 x 1 cos    β − P 1 x ′ 1 sin    β = 0 Under the subquadratic condition at zero, we obtain the existence of two nontrivial solutions and infinitely many solutions by means of the linking theorem of Schechter and the symmetric mountain pass theorem of Kajikiya. Applying the results to Sturm–Liouville equations satisfying the mixed boundary value conditions or the Neumann boundary value conditions, we obtain some new theorems and give some examples to illustrate the validity of our results.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1393
Author(s):  
Weichun Bu ◽  
Tianqing An ◽  
José Vanteler da C. Sousa ◽  
Yongzhen Yun

In this article, we first obtain an embedding result for the Sobolev spaces with variable-order, and then we consider the following Schrödinger–Kirchhoff type equations a+b∫Ω×Ω|ξ(x)−ξ(y)|p|x−y|N+ps(x,y)dxdyp−1(−Δ)ps(·)ξ+λV(x)|ξ|p−2ξ=f(x,ξ),x∈Ω,ξ=0,x∈∂Ω, where Ω is a bounded Lipschitz domain in RN, 1<p<+∞, a,b>0 are constants, s(·):RN×RN→(0,1) is a continuous and symmetric function with N>s(x,y)p for all (x,y)∈Ω×Ω, λ>0 is a parameter, (−Δ)ps(·) is a fractional p-Laplace operator with variable-order, V(x):Ω→R+ is a potential function, and f(x,ξ):Ω×RN→R is a continuous nonlinearity function. Assuming that V and f satisfy some reasonable hypotheses, we obtain the existence of infinitely many solutions for the above problem by using the fountain theorem and symmetric mountain pass theorem without the Ambrosetti–Rabinowitz ((AR) for short) condition.


2020 ◽  
Vol 6 (1) ◽  
pp. 30
Author(s):  
Hassan Belaouidel ◽  
Anass Ourraoui ◽  
Najib Tsouli

This paper deals with the existence and multiplicity of solutions for a class of quasilinear problems involving \(p(x)\)-Laplace type equation, namely $$\left\{\begin{array}{lll}-\mathrm{div}\, (a(| \nabla u|^{p(x)})| \nabla u|^{p(x)-2} \nabla u)= \lambda f(x,u)&\text{in}&\Omega,\\n\cdot a(| \nabla u|^{p(x)})| \nabla u|^{p(x)-2} \nabla u +b(x)|u|^{p(x)-2}u=g(x,u) &\text{on}&\partial\Omega.\end{array}\right.$$ Our technical approach is based on variational methods, especially, the mountain pass theorem and the symmetric mountain pass theorem.


Author(s):  
Xiaonan Liu ◽  
Shiwang Ma ◽  
Jiankang Xia

Abstract We are concerned with the semi-classical states for the Choquard equation $$-{\epsilon }^2\Delta v + Vv = {\epsilon }^{-\alpha }(I_\alpha *|v|^p)|v|^{p-2}v,\quad v\in H^1({\mathbb R}^N),$$ where N ⩾ 2, I α is the Riesz potential with order α ∈ (0, N − 1) and 2 ⩽ p < (N + α)/(N − 2). When the potential V is assumed to be bounded and bounded away from zero, we construct a family of localized bound states of higher topological type that concentrate around the local minimum points of the potential V as ε → 0. These solutions are obtained by combining the Byeon–Wang's penalization approach and the classical symmetric mountain pass theorem.


Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 5
Author(s):  
Jun Ik Lee ◽  
Yun-Ho Kim ◽  
Jongrak Lee

We are concerned with the following elliptic equations: ( − Δ ) p , K s u + V ( x ) | u | p − 2 u = λ f ( x , u ) in R N , where ( − Δ ) p , K s is the nonlocal integrodifferential equation with 0 < s < 1 < p < + ∞ , s p < N the potential function V : R N → ( 0 , ∞ ) is continuous, and f : R N × R → R satisfies a Carathéodory condition. The present paper is devoted to the study of the L ∞ -bound of solutions to the above problem by employing De Giorgi’s iteration method and the localization method. Using this, we provide a sequence of infinitely many small-energy solutions whose L ∞ -norms converge to zero. The main tools were the modified functional method and the dual version of the fountain theorem, which is a generalization of the symmetric mountain-pass theorem.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Lizhen Chen ◽  
Anran Li ◽  
Chongqing Wei

We investigate a class of fractional Schrödinger-Poisson system via variational methods. By using symmetric mountain pass theorem, we prove the existence of multiple solutions. Moreover, by using dual fountain theorem, we prove the above system has a sequence of negative energy solutions, and the corresponding energy values tend to 0. These results extend some known results in previous papers.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Xiangsheng Ren ◽  
Jiabin Zuo ◽  
Zhenhua Qiao ◽  
Lisa Zhu

In this paper, we investigate the existence of infinitely many solutions to a fractional p-Kirchhoff-type problem satisfying superlinearity with homogeneous Dirichlet boundary conditions as follows: [a+b(∫R2Nux-uypKx-ydxdy)]Lpsu-λ|u|p-2u=gx,u, in  Ω, u=0, in  RN∖Ω, where Lps is a nonlocal integrodifferential operator with a singular kernel K. We only consider the non-Ambrosetti-Rabinowitz condition to prove our results by using the symmetric mountain pass theorem.


2018 ◽  
Vol 61 (4) ◽  
pp. 943-959 ◽  
Author(s):  
Leszek Gasiński ◽  
Nikolaos S. Papageorgiou

AbstractWe consider a nonlinear Robin problem driven by a non-homogeneous differential operator plus an indefinite potential term. The reaction function is Carathéodory with arbitrary growth near±∞. We assume that it is odd and exhibits a concave term near zero. Using a variant of the symmetric mountain pass theorem, we establish the existence of a sequence of distinct nodal solutions which converge to zero.


2017 ◽  
Vol 15 (1) ◽  
pp. 578-586
Author(s):  
Peiluan Li ◽  
Youlin Shang

Abstract Using variational methods, we investigate the solutions of a class of fractional Schrödinger equations with perturbation. The existence criteria of infinitely many solutions are established by symmetric mountain pass theorem, which extend the results in the related study. An example is also given to illustrate our results.


Sign in / Sign up

Export Citation Format

Share Document