scholarly journals On some Hardy-type inequalities for generalized fractional integrals

2019 ◽  
pp. 33-54
Author(s):  
Muhammad Samraiz ◽  
Shafqat Shahzadi ◽  
Sajid Iqbal ◽  
Živorad Tomovski
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Usama Hanif ◽  
Ammara Nosheen ◽  
Rabia Bibi ◽  
Khuram Ali Khan ◽  
Hamid Reza Moradi

In this paper, Jensen and Hardy inequalities, including Pólya–Knopp type inequalities for superquadratic functions, are extended using Riemann–Liouville delta fractional integrals. Furthermore, some inequalities are proved by using special kernels. Particular cases of obtained inequalities give us the results on time scales calculus, fractional calculus, discrete fractional calculus, and quantum fractional calculus.


2021 ◽  
Vol 12 (4) ◽  
pp. 1-15
Author(s):  
GEORGE A. ANASTASSIOU

We introduce here the mixed generalized multivariate Prabhakar type left and right fractional integrals and study their basic properties, such as preservation of continuity and their boundedness as positive linear operators. Then we produce an interesting variety of related multivariate left and right fractional Hardy type inequalities under convexity. We introduce also other related multivariate fractional integrals


2014 ◽  
Vol 64 (4) ◽  
Author(s):  
Sajid Iqbal ◽  
Kristina Himmelreich ◽  
Josip Pečarić

AbstractThe aim of this paper is to present new more general Hardy-type inequalities for different kinds of fractional integrals and fractional derivatives.


Fractals ◽  
2021 ◽  
pp. 2240004
Author(s):  
FUZHANG WANG ◽  
USAMA HANIF ◽  
AMMARA NOSHEEN ◽  
KHURAM ALI KHAN ◽  
HIJAZ AHMAD ◽  
...  

In this paper, some Jensen- and Hardy-type inequalities for convex functions are extended by using Riemann–Liouville delta fractional integrals. Further, some Pólya–Knopp-type inequalities and Hardy–Hilbert-type inequality for convex functions are also proved. Moreover, some related inequalities are proved by using special kernels. Particular cases of resulting inequalities provide the results on fractional calculus, time scales calculus, quantum fractional calculus and discrete fractional calculus.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Ahmed A. El-Deeb ◽  
Hamza A. Elsennary ◽  
Dumitru Baleanu

1998 ◽  
Vol 194 (1) ◽  
pp. 23-33 ◽  
Author(s):  
D. E. Edmunds ◽  
R. Hurri-Syrjänen

Sign in / Sign up

Export Citation Format

Share Document