scholarly journals A Study of Non-Intrusive Appliance Load Identification Algorithm using Complex Sensor Data Processing Algorithm

Author(s):  
Sung-Yoon Chae ◽  
◽  
Jinhee Park
Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1340 ◽  
Author(s):  
Xudong Wen ◽  
Chunwu Liu ◽  
Zhiping Huang ◽  
Shaojing Su ◽  
Xiaojun Guo ◽  
...  

There are many algorithms that can be used to fuse sensor data. The complementary filtering algorithm has low computational complexity and good real-time performance characteristics. It is very suitable for attitude estimation of small unmanned aerial vehicles (micro-UAVs) equipped with low-cost inertial measurement units (IMUs). However, its low attitude estimation accuracy severely limits its applications. Though, many methods have been proposed by researchers to improve attitude estimation accuracy of complementary filtering algorithms, there are few studies that aim to improve it from the data processing aspect. In this paper, a real-time first-order differential data processing algorithm is proposed for gyroscope data, and an adaptive adjustment strategy is designed for the parameters in the algorithm. Besides, the differential-nonlinear complementary filtering (D-NCF) algorithm is proposed by combine the first-order differential data processing algorithm with the basic nonlinear complementary filtering (NCF) algorithm. The experimental results show that the first-order differential data processing algorithm can effectively correct the gyroscope data, and the Root Mean Square Error (RMSE) of attitude estimation of the D-NCF algorithm is smaller than when the NCF algorithm is used. The RMSE of the roll angle decreases from 1.1653 to 0.5093, that of the pitch angle decreases from 2.9638 to 1.5542, and that of the yaw angle decreases from 0.9398 to 0.6827. In general, the attitude estimation accuracy of D-NCF algorithm is higher than that of the NCF algorithm.


2021 ◽  
pp. 464-468
Author(s):  
A.D. Tikhonov ◽  
A.A. Kochiev

The article deals with determination of coordinates using global navigation systems, and application of the PPP data processing algorithm to obtain coordinates. The authors conducted an experiment illustrating the algorithm accuracy.


Metallomics ◽  
2014 ◽  
Vol 6 (8) ◽  
pp. 1387-1389
Author(s):  
Tomasz K. Wojdacz ◽  
Matteo Bottai ◽  
Marie Vahter ◽  
Karin Broberg

The 450k Chip Analysis Methylation Pipeline (ChAMP) is a novel Illumina Infinium HumanMethylation450 BeadChip data processing algorithm that allows the analysis of copy number alterations (CNAs).


Sign in / Sign up

Export Citation Format

Share Document