scholarly journals Peer Review #2 of "Spatially resolved dendritic integration: towards a functional classification of neurons (v0.1)"

Author(s):  
H Song
2019 ◽  
Author(s):  
Christoph Kirch ◽  
Leonardo L Gollo

AbstractThe vast tree-like dendritic structure of neurons allows them to receive and integrate input from many neurons. A wide variety of neuronal morphologies exist, however, their role in dendritic integration, and how it shapes the response of the neuron, is not yet fully understood. Here, we study the evolution and interactions of dendritic spikes in excitable neurons with complex real branch structures. We focus on dozens of digitally reconstructed illustrative neurons from the online repository NeuroMorpho.org, which contains over 100,000 neurons. Yet, our methods can be promptly extended to any other neuron. This approach allows us to estimate and map specific and heterogeneous patterns of activity observed across extensive dendritic trees with thousands of compartments. We propose a classification of neurons based on the location of the soma (centrality) and the number of branches connected to the soma. These are key topological factors in determining the neuron’s energy consumption, firing rate, and the dynamic range, which quantifies the range in synaptic input rate that can be reliably encoded by the neuron’s firing rate. Moreover, we find that bifurcations, the structural building blocks of complex dendrites, play a major role in increasing the dynamic range of neurons. Our results provide a better understanding of the effects of neuronal morphology in the diversity of neuronal dynamics and function.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10250
Author(s):  
Christoph Kirch ◽  
Leonardo L. Gollo

The vast tree-like dendritic structure of neurons allows them to receive and integrate input from many neurons. A wide variety of neuronal morphologies exist, however, their role in dendritic integration, and how it shapes the response of the neuron, is not yet fully understood. Here, we study the evolution and interactions of dendritic spikes in excitable neurons with complex real branch structures. We focus on dozens of digitally reconstructed illustrative neurons from the online repository NeuroMorpho.org, which contains over 130,000 neurons. Yet, our methods can be promptly extended to any other neuron. This approach allows us to estimate and map specific and heterogeneous patterns of activity observed across extensive dendritic trees with thousands of compartments. We propose a classification of neurons based on the location of the soma (centrality) and the number of branches connected to the soma. These are key topological factors in determining the neuron’s energy consumption, firing rate, and the dynamic range, which quantifies the range in synaptic input rate that can be reliably encoded by the neuron’s firing rate. Moreover, we find that bifurcations, the structural building blocks of complex dendrites, play a major role in increasing the dynamic range of neurons. Our results provide a better understanding of the effects of neuronal morphology in the diversity of neuronal dynamics and function.


Physiotherapy ◽  
2013 ◽  
Vol 21 (3) ◽  
Author(s):  
Natalia Uścinowicz ◽  
Wojciech Seidel ◽  
Paweł Zostawa ◽  
Sebastian Klich

AbstractThe recent Olympic Games in London incited much interest in the competition of disabled athletes. Various people connected with swimming, including coaches and athletes, have speculated about the fairness of competitions of disabled athletes. A constant problem are the subjective methods of classification in disabled sport. Originally, athletes with disabilities were classified according to medical diagnosis. Due to the injustice which still affects the competitors, functional classification was created shortly after. In the present review, the authors show the anomalies in the structure of the classification. The presented discovery led to the suggestion to introduce objective methods, thanks to which it would be no longer necessary to rely on the subjective assessment of the classifier. According to the authors, while using objective methods does not completely rule out the possibility of fraud by disabled athletes in the classification process, it would certainly reduce their incidence. Some of the objective methods useful for the classification of disabled athletes are: posturography, evaluation of the muscle parameters, electrogoniometric assessment, surface electromyography, and analysis of kinematic parameters. These methods have provide objective evaluation in the diagnostic sense but only if they are used in tandem. The authors demonstrate the undeniable benefits of using objective methods. Unfortunately, there are not only advantages of such solution, there also several drawbacks to be found. The conclusion of the article is the statement by the authors that it is right to use objective methods which allow to further the most important rule in sport: fair-play.


Sign in / Sign up

Export Citation Format

Share Document