scholarly journals Direct numerical simulation of transitional pulsatile stenotic flow using Lattice Boltzmann Method

Author(s):  
Kartik Jain

The present contribution reports direct numerical simulations of pulsatile flow through a 75% eccentric stenosis using the Lattice Boltzmann Method (LBM). The stenosis was previously studied by Varghese, Frankel, and Fischer in a benchmark computation, and the goal of this work is to evaluate the LBM and the solver Musubi for transitional flows in anatomically realistic geometries. A part of the study compares the LBM simulation results against the benchmark and evaluates the efficacy of most basic LBM scheme for simulation of such flows. The novelty lies in the computation of Kolmogorov micro-scales by performing simulations that consist of up to ∼ 700 million cells. Recommendations on the choice of spatial and temporal resolutions for simulation of transitional flows in complex geometries naturally arise from the results. The LBM results show an excellent agreement with the previously published results thereby validating the method and the solver Musubi for the simulation of transitional flows. The study suggests that with a prudent calibration of the parameters, the LB method, due to its simplicity and compute efficiency has advantages for the simulation of such flows.

2016 ◽  
Author(s):  
Kartik Jain

The present contribution reports direct numerical simulations of pulsatile flow through a 75% eccentric stenosis using the Lattice Boltzmann Method (LBM). The stenosis was previously studied by Varghese, Frankel, and Fischer in a benchmark computation, and the goal of this work is to evaluate the LBM and the solver Musubi for transitional flows in anatomically realistic geometries. A part of the study compares the LBM simulation results against the benchmark and evaluates the efficacy of most basic LBM scheme for simulation of such flows. The novelty lies in the computation of Kolmogorov micro-scales by performing simulations that consist of up to ∼ 700 million cells. Recommendations on the choice of spatial and temporal resolutions for simulation of transitional flows in complex geometries naturally arise from the results. The LBM results show an excellent agreement with the previously published results thereby validating the method and the solver Musubi for the simulation of transitional flows. The study suggests that with a prudent calibration of the parameters, the LB method, due to its simplicity and compute efficiency has advantages for the simulation of such flows.


2015 ◽  
Author(s):  
Kartik Jain

In the present work, I perform direct numerical simulations of pulsatile flow through a 75% eccentric stenosis using the Lattice Boltzmann Method. The stenosis was studied by Varghese et al. (2007b) in a benchmark computation and the goal of this work is to validate the LBM solver Musubi for transitional flows in anatomically realistic geometries. Whereas most of the study reproduces and compares simulation results from Musubi against the benchmark, the latter part quantifies the Kolmogorov micro-scales and discusses the role of space and time resolutions for the simulation of a transitional flow. The LBM results show an excellent agreement with the previously published results thereby increasing confidence on our Musubi solver for the simulation of transitional flows. The aim of this study is not to compare the computational efficiency of the code or the method but only the physics of the flow.


2015 ◽  
Author(s):  
Kartik Jain

In the present work, I perform direct numerical simulations of pulsatile flow through a 75% eccentric stenosis using the Lattice Boltzmann Method. The stenosis was studied by Varghese et al. (2007b) in a benchmark computation and the goal of this work is to validate the LBM solver Musubi for transitional flows in anatomically realistic geometries. Whereas most of the study reproduces and compares simulation results from Musubi against the benchmark, the latter part quantifies the Kolmogorov micro-scales and discusses the role of space and time resolutions for the simulation of a transitional flow. The LBM results show an excellent agreement with the previously published results thereby increasing confidence on our Musubi solver for the simulation of transitional flows. The aim of this study is not to compare the computational efficiency of the code or the method but only the physics of the flow.


2021 ◽  
pp. 149-149
Author(s):  
Gaojie Liang ◽  
Lijun Liu ◽  
Haiqian Zhao ◽  
Cong Li ◽  
Nandi Zhang

In this study, droplet nucleation and jumping on the conical microstructure surface is simulated using the Lattice Boltzmann Method (LBM). The nucleation and jumping laws of the droplet on the surface are summarized. The numerical results suggest that the height and the gap of the conical microstructure exhibit a significant influence on the nucleation position of the droplet. When the ratio of height to the gap of the microstructure(H/D) is small, the droplet tends to nucleate at the bottom of the structure. Otherwise, the droplet tends to nucleate towards the side of the structure. The droplet grown in the side nucleation mode possesses better hydrophobicity than that of the droplet grown in the bottom nucleation mode and the droplet jumping becomes easier. Apart from the coalescence of the droplets jumping out of the surface, jumping of individual droplets may also occur under certain conditions. The ratio of the clearance to the width of the conical microstructure(D/F) depends on the jumping mode of the droplet. The simulation results indicate that when the D/F ratio is greater than 1.2, the coalescence jump of droplets is likely to occur. On the contrary, the individual jump of droplets is easy to occur.


2020 ◽  
Vol 32 (11) ◽  
pp. 115122
Author(s):  
Wei-Jie Lin ◽  
Ming-Jiun Li ◽  
Chi-Wei Su ◽  
Xiao-Ying Huang ◽  
Chao-An Lin

2014 ◽  
Vol 754 ◽  
pp. 122-160 ◽  
Author(s):  
B. Min Yun ◽  
L. P. Dasi ◽  
C. K. Aidun ◽  
A. P. Yoganathan

AbstractProsthetic heart valves have been widely used to replace diseased or defective native heart valves. Flow through bileaflet mechanical heart valves (BMHVs) have previously demonstrated complex phenomena in the vicinity of the valve owing to the presence of two rigid leaflets. This study aims to accurately capture the complex flow dynamics for pulsatile flow through a 23 mm St Jude Medical (SJM) Regent™ BMHV. The lattice-Boltzmann method (LBM) is used to simulate pulsatile flow through the valve with the inclusion of reverse leakage flow at very high spatiotemporal resolution that can capture fine details in the pulsatile BMHV flow field. For higher-Reynolds-number flows, this high spatiotemporal resolution captures features that have not been observed in previous coarse resolution studies. In addition, the simulations are able to capture with detail the features of leaflet closing and the asymmetric b-datum leakage jet during mid-diastole. Novel flow physics are visualized and discussed along with quantification of turbulent features of this flow, which is made possible by this parallelized numerical method.


Sign in / Sign up

Export Citation Format

Share Document