9. Hypothesis Tests: Linear Relationships

2003 ◽  
Vol 56 ◽  
pp. 61-65
Author(s):  
J.A. Zabkiewicz ◽  
W.A. Forster

Pesticide uptake into plants is typically reported as percentage uptake of the amount applied but in studies of the mechanism of cuticular penetration this approach has not been helpful It can be shown that relating percentage uptake to initial dose of bentazone applied to Vicia faba foliage cannot provide pertinent relationships that can be used to explain cuticular uptake mechanisms However applying the principles of Ficks Law and using mass or molar quantities does provide excellent linear relationships between mass uptake and initial dose applied Universal equations can be derived that relate dose uptake to initial dose applied onto plant leaves


2019 ◽  
Author(s):  
Amanda Kay Montoya ◽  
Andrew F. Hayes

Researchers interested in testing mediation often use designs where participants are measured on a dependent variable Y and a mediator M in both of two different circumstances. The dominant approach to assessing mediation in such a design, proposed by Judd, Kenny, and McClelland (2001), relies on a series of hypothesis tests about components of the mediation model and is not based on an estimate of or formal inference about the indirect effect. In this paper we recast Judd et al.’s approach in the path-analytic framework that is now commonly used in between-participant mediation analysis. By so doing, it is apparent how to estimate the indirect effect of a within-participant manipulation on some outcome through a mediator as the product of paths of influence. This path analytic approach eliminates the need for discrete hypothesis tests about components of the model to support a claim of mediation, as Judd et al’s method requires, because it relies only on an inference about the product of paths— the indirect effect. We generalize methods of inference for the indirect effect widely used in between-participant designs to this within-participant version of mediation analysis, including bootstrap confidence intervals and Monte Carlo confidence intervals. Using this path analytic approach, we extend the method to models with multiple mediators operating in parallel and serially and discuss the comparison of indirect effects in these more complex models. We offer macros and code for SPSS, SAS, and Mplus that conduct these analyses.


2020 ◽  
Vol 16 (3) ◽  
pp. 328-334
Author(s):  
Jie Ge ◽  
Jin-Wen Wang ◽  
Qi-Yan Guo ◽  
Ai-Dong Wen

Objective: A validated liquid chromatography-tandem mass spectrometry method (LCMS/ MS) was established to simultaneously determine the concentration of triflusal and its main metabolite 2-hydroxy-4-trifluoromethyl benzoic acid(HTB) in human urine. Methods: The separation was performed on a Dikma C18 column using isocratic elution with acetonitrile-4 mmol/L ammonium acetate aqueous solution containing 0.3 % formic acid water (78: 28, V/V). The method involved extraction with methanol using protein precipitation. The precursor-toproduct ion transitions with multiple reaction monitoring was m/z 247.1→161.1, 204.8→106.7and 136.9→93.0 for triflusal, HTB and salicylic acid(IS), respectively. The method showed good linear relationships over the ranges of 0.08 to 48 μg/mL and0.5 to 50 μg/mL. Results: It was the first time that a urinary excretion study of triflusal capsule as oral. The cumulative urinary recovery showed 8.5% and 2.7% for triflusal and HTB, respectively. Conclusion: This method was successfully used for evaluating the pharmacokinetic properties of triflusal and HTB in urine in Chinese healthy subjects.


Author(s):  
Rini Pauly ◽  
Catherine A. Ziats ◽  
Ludovico Abenavoli ◽  
Charles E. Schwartz ◽  
Luigi Boccuto

Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that poses several challenges in terms of clinical diagnosis and investigation of molecular etiology. The lack of knowledge on the pathogenic mechanisms underlying ASD has hampered the clinical trials that so far have tried to target ASD behavioral symptoms. In order to improve our understanding of the molecular abnormalities associated with ASD, a deeper and more extensive genetic profiling of targeted individuals with ASD was needed. Methods: The recent availability of new and more powerful sequencing technologies (third-generation sequencing) has allowed to develop novel strategies for characterization of comprehensive genetic profiles of individuals with ASD. In particular, this review will describe integrated approaches based on the combination of various omics technologies that will lead to a better stratification of targeted cohorts for the design of clinical trials in ASD. Results: In order to analyze the big data collected by assays such as whole genome, epigenome, transcriptome, and proteome, it is critical to develop an efficient computational infrastructure. Machine learning models are instrumental to identify non-linear relationships between the omics technologies and therefore establish a functional informative network among the different data sources. Conclusion: The potential advantage provided by these new integrated omics-based strategies is to better characterize the genetic background of ASD cohorts, identify novel molecular targets for drug development, and ultimately offer a more personalized approach in the design of clinical trials for ASD.


Biometrika ◽  
1986 ◽  
Vol 73 (2) ◽  
pp. 333-343 ◽  
Author(s):  
JOHN T. KENT

Sign in / Sign up

Export Citation Format

Share Document