Developing a Realistic Grain Boundary Model to Study Solute Segregation from First Principles

Author(s):  
A. Clarke ◽  
M. Eberhart ◽  
M. Rajivmoorthy
2010 ◽  
Vol 654-656 ◽  
pp. 942-945 ◽  
Author(s):  
Tokuteru Uesugi ◽  
Kenji Higashi

We investigate the energy of segregation of solute Ca at symmetric tilt grain boundary in aluminum from the first-principles calculations. As energy of segregation of Ca is negative, Ca atoms tend to segregate at the grain boundary. Furthermore, on basis of the Rice-Wang model, we study the effect of the segregation of Ca on the grain boundary embrittlement of aluminum. Our first-principles calculations of energies of segregation at grain boundary and free surface show that Ca behaves as embrittler.


2005 ◽  
Vol 903 ◽  
Author(s):  
Andrew Detor ◽  
Michael K. Miller ◽  
Christopher A. Schuh

AbstractAtom probe tomography is used to observe the solute distribution in electrodeposited nanocrystalline Ni-W alloys with three different grain sizes (3, 10, and 20 nm) and the results are compared with atomistic computer simulations. The presence of grain boundary segregation is confirmed by detailed analysis of composition fluctuations in both experimental and simulated structures, and its extent quantified by a frequency distribution analysis. In contrast to other nanocrystalline alloys, the present Ni-W alloys exhibit only a subtle amount of solute segregation to the intergranular regions. This finding is consistent with quantitative predictions for these alloys based upon a thermodynamic model of grain boundary segregation.


2020 ◽  
Vol 4 (7) ◽  
Author(s):  
G. D. Samolyuk ◽  
M. Eisenbach ◽  
D. Shin ◽  
Y. N. Osetsky ◽  
A. Shyam ◽  
...  

2016 ◽  
Vol 41 (47) ◽  
pp. 22214-22220 ◽  
Author(s):  
Fei Wang ◽  
Wensheng Lai ◽  
Rusong Li ◽  
Bin He ◽  
Sufen Li

Sign in / Sign up

Export Citation Format

Share Document