scholarly journals Liquefaction Potential Analysis Based on Nonlinear Ground Response on the Coastline of Bengkulu City, Indonesia

2020 ◽  
Vol 24 (1) ◽  
pp. 34
Author(s):  
Lindung Zalbuin Mase
2020 ◽  
Vol 11 (2) ◽  
pp. 1-25
Author(s):  
Shiv Shankar Kumar ◽  
Pradeep Acharya ◽  
Pradeep Kumar Dammala ◽  
Murali Krishna Adapa

This chapter presents the seismic vulnerability of Kathmandu City (Nepal), based on Nepal 2015 earthquake, in terms of the ground response and liquefaction potential. The spatially well-distributed 10-boreholes and ground motions of Mw 7.8 Nepal 2015 earthquake recorded at five different stations were adopted for the analysis. The range of peak ground acceleration and peak spectral acceleration were in the order of 0.21g-0.42g and 0.74g-1.50g, respectively. Liquefaction potential of the sites were computed using both semi-empirical approach and liquefaction potential index (LPI). LPI shows that the 6 sites out of 10 sites are at high risk of liquefaction.


2021 ◽  
Vol 930 (1) ◽  
pp. 012077
Author(s):  
F Patriaman ◽  
T F Fathani ◽  
W Wilopo

Abstract Sulawesi Island has a Palu Koro Fault that actively moves with a high displacement magnitude but low seismicity. On 28 September 2018, at 18:02 local time, an earthquake occurred in Palu Koro Shear Fault. The field investigations along the Palu coast revealed new evidence regarding the extensive liquefaction in these areas, both inland and coastal land. The research command area was located in the Palu Bay coastal area, the Province of Central Sulawesi. The data used was in the form of the Standard Penetration Test of the area, and the potential liquefaction analysis was carried out using the simplified procedure method. Furthermore, to determine the level of liquefaction potential, Liquefaction Potential Index was applied. Geological observations showed that the soil condition in the Palu Bay area was dominated by non-cohesive soil (sand). Based on the liquefaction potential analysis, it was indicated that most of the eastern region of the Palu Bay area showed no liquefaction potential. On the contrary, the western and southern parts were indicated to have liquefaction potentials. The Liquefaction Potential Index analysis results showed that the western and southern areas were dominated with extremely high liquefaction potentials. Meanwhile, in the eastern area, it was extremely low.


2020 ◽  
Vol 6 (3) ◽  
pp. 319
Author(s):  
Lindung Zalbuin Mase ◽  
Muhammad Farid ◽  
Nanang Sugianto ◽  
Sintia Agustina

Bengkulu City is one of the areas vulnerable to earthquakes in Indonesia and several studies have shown the city experienced a unique phenomenon called liquefaction during the Mw 8.6 Bengkulu-Mentawai Earthquake. This event has initiated a step by step intensive study on earthquake in the area but previous studies are generally limited by the use of site investigation data to empirically analyse liquefaction potential and those that used advance method such as the seismic wave propagation model are rare. This means the level of liquefaction damage in the study area is not totally understood, therefore, this research focused on implementing the ground response analysis to quantify the Liquefaction Potential Index (LPI) using several areas in Bengkulu City in order to determine their vulnerability. The process involved the collection of several site investigation data including boring log and shear wave velocity profile as well as a desk study to determine the geological condition of the observed sites. Moreover, a non-linear seismic ground response analysis was conducted to obtain maximum ground surface acceleration (amax) parameter which was further used to analyse the liquefaction potential in the study area. The results showed several sites have the potential to experience liquefaction during earthquakes. The method applied was considered successful and the results are expected to be implemented for city development. Furthermore, the framework is recommended for adoption in investigating the liquefaction in other areas.


Author(s):  
Himatul Farichah ◽  
Putu Tantri Kumala Sari

Surabaya has an earthquake potential reach to 6.5 Mw. Moreover, on average, Surabaya area is a lowland which is alluvial deposits. Thus, it is required to perform potential liquefaction. Liquefaction potential analysis was performed by taking the soil data from the center of Surabaya. The initial of liquefaction potential analysis was conducted by considering soil gradation, relative density (DR), fine content (FC), degree of saturation (SR) dan SPT number. However, the advanced analysis was undertaken by utilizing Youd and Idriss 2001 dan metode Idriss 2008. The results of initial of liquefaction potential analysis show that the soil has potential to be liquefied at the depth 1-7m, however at the depth 22m the soil is not liquefied. Furthermore, the results of advanced analysis and conclusions of the analysis show that the soil has a liquefied potential at the depth 17 m from the surfaceABSTRAK Kota Surabaya memiliki potensi gempa yang terjadi bisa mencapai 6.5 Mw. Selain itu, Wilayah kota Surabaya merupakan daerah yang rata-rata dataran rendah, yang berkisar 80% merupakan endapan alluvial. Sehingga perlu dilakukan analisis potensi likuifaksi. Analisis potensi likuifaksi hanya dilakukan pada data tanah wilayah Surabaya Pusat. Analisis awal potensi likuifaksi dilakukan berdasarkan aspek gradasi tanah, relative density (DR), fine content (FC), derajat kejenuhan (SR), dan jumlah pukulan SPT. Sedangkan analisis lanjutan dengan menghitung Cyclic Shear Ratio (CSR), Cyclic Resistance Ratio (CRR), dan Factor of safety (FS) dengan menggunakan metode Youd dan Idriss 2001 dan metode Idriss 2008. Berdasarkan analisis awal, pada kedalaman 1-7 m masih ada potensi likuifaksi, sedangkan tidak ada lagi potensi likuifaksi pada kedalaman lebih dari 22 m. Berdasarkan analisis lanjutan dan kesimpulan analisis, hampir semua kedalaman memiliki potensi likuifaksi hingga kedalaman 17m.Kata kunci : Likuifaksi; gempa; analisis potensi likuifaksi


Sign in / Sign up

Export Citation Format

Share Document