total stress
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 50)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 34 (06) ◽  
pp. 1800-1818
Author(s):  
Shahram Shiravi ◽  
Arash Razmkhah

In this study, the effects of various geometric parameters of a dam in 2D static analysis of stress-strain on the upstream slope of the asphaltic concrete core rockfill dams were investigated. For this purpose, first the geometric characteristics of a large number of world's dams were collected and assessed, then by geometric modeling of these dams, many numerical models were developed for static analysis using GeoStudio software in eight height classes, three cases of upstream and downstream slopes, three different shape and thickness of the asphaltic concrete core under different Impounding states including "Full Reservoir", "Half full Reservoir", "End of construction and "Rapid Drawdown on a rigid type of foundation. The results of this study demonstrated that in four different construction and impounding states and in three different cases of slopes, Increasing the height parameter, causes increasing the Maximum total stress, Maximum total strain, Shear strain and Maximum shear stress for all construction and impounding states. The Maximum total stress decreased for all operating situations as the upstream slope reduced. According to the obtained results from the static stress-strain analysis, increasing both vertical and inclined asphaltic concrete core thicknesses, leads to decreasing the Maximum shear stress in Full Reservoir state but it increases in other state of impoundment. Moreover, by comparing the displacements related to specified points on the upstream slopes, increasing the height parameter, leads to increasing both horizontal and vertical displacements, the volumetric strain, deviator strain and deviator stress for all impounding conditions. In the following, the additional results were provided along with diagrams for further analysis.


2021 ◽  
Vol 16 (2) ◽  
Author(s):  
Denis Molnár ◽  
Miroslav Blatnický ◽  
Ján Dižo

A bridge crane is a type of crane that is designed for lifting / lowering and transferring material in the horizontal direction and is used mainly in production halls, warehouses and transship points. A part of the lifting mechanism of the bridge crane is a crane hook on which the load is suspended. Sufficient strength is required from the crane hook in order to be able to withstand high loads relatively well. The most stressed part of the crane hook is the curved inner surface. This surface is considered critical in terms of strength. The goal of this paper is to select a suitable crane hook for a single girder bridge crane with a load capacity of 500 kg and a strength analysis of the selected crane hook. Strength analysis is performed by two methods, first is based on analytical calculation and second is based on finite element method (FEM) performed in Ansys software. The comparison of the obtained total stresses from both methods is the part of the analysis. From the results of the FEM analysis and analytical calculation it can be stated that the selected crane hook RSN 05 P - DIN 15401 with a load capacity of 500 kg is suitable for the above-mentioned bridge crane. It can also be concluded that the total stress determined by the analytical calculation is lower by 9.8 % compared to the stress obtained from the Ansys software.


2021 ◽  
Vol 11 (24) ◽  
pp. 11652
Author(s):  
Yan Liu ◽  
Zhiyuan Deng ◽  
Xiekang Wang

Landslides are a serious geohazard worldwide, causing many casualties and considerable economic losses every year. Rainfall-induced shallow landslides commonly occur in mountainous regions. Many factors affect an area’s susceptibility, such as rainfall, the soil, and the slope. In this paper, the effects of rainfall intensity, rainfall pattern, slope gradient, and soil type on landslide susceptibility are studied. Variables including soil volumetric water content, matrix suction, pore water pressure, and the total stress throughout the rainfall were measured. The results show that, under the experimental conditions of this paper, no landslides occurred on a 5° slope. On a 15° slope, when the rainfall intensity was equal to or less than 80 mm/h with a 1 h duration, landslides also did not happen. With a rainfall intensity of 120 mm/h, the rainfall pattern in which the intensity gradually diminishes could not induce landslides. Compared with fine soils, coarser soils with gravels were found to be prone to landslides. As the volumetric water content rose, the matrix suction declined from the time that the level of infiltration reached the position of the matrix. The pore water pressure and the total stress both changed drastically either immediately before or after the landslide. In addition, the sediment yield depended on the above factors. Steeper slopes, stronger rainfall, and coarser soils were all found to increase the amount of sediment yield.


2021 ◽  
Vol 12 ◽  
Author(s):  
Francesca Felicia Operto ◽  
Grazia Maria Giovanna Pastorino ◽  
Federica Pippa ◽  
Chiara Padovano ◽  
Valentina Vivenzio ◽  
...  

Introduction: The aim of this study was to identify the presence of emotional and behavioral symptoms in children and adolescents with epilepsy, to measure the stress levels in their parents, and to determine if and how parental stress was linked to emotional and behavioral symptoms of their children.Methods: We conducted a cross-sectional observational study including 103 children and adolescents with different form of epilepsy and 93 sex-/age-matched controls. Parental stress and emotional and behavioral symptoms were assessed through two standardized questionnaires: the Parenting Stress Index (PSI) and the Child Behavior Checklist (CBCL), respectively. We also considered the following variables: age, sex, maternal education level, family history of psychiatric disorders, duration of epilepsy, seizure frequency, seizure type, and number of antiseizure medications.Results: The statistical comparison showed that the epilepsy group obtained significantly higher scores than controls in almost all the CBCL and the PSI scales (p < 0.05). The correlation analysis revealed a significant relationship between the PSI Total Stress scale and the following CBCL scales: total problems, internalizing problems, and externalizing problems (p < 0.05). An earlier age of seizure onset was related to a greater presence of externalizing problems, total problems, and total stress (p < 0.05).Conclusion: In the epilepsy group, we found higher levels of parental stress and higher presence of emotional and behavioral symptoms compared to controls, mainly represented by internalizing problems (anxiety and depression symptoms). Therefore, it is important to precociously detect these symptoms and monitor them over time, in order to prevent psychiatric problems. In addition, parents of children with epilepsy should be offered psychological support to cope with parental stress and to improve the relationship with their children.


Author(s):  
Mikhail A. Guzev ◽  
◽  
Evgenii P. Riabokon

A material with a microstructure is considered. A material is described on the basis of a non-Euclidean model of a continuous medium. In equilibrium, the total stress field is represented as the sum of elastic and self-balanced stresses, the parameterization of which is given through the scalar curvature of the Ricci tensor. It is proposed to use the spectral biharmonic equation to calculate the scalar curvature. Using the example of a plane strain state of a material, it is shown that the amplitude coefficients of elastic and self-balanced fields can be chosen so that singularities of the same type compensate each other in the full stress field


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bin Xiao ◽  
Minyun Hu ◽  
Peijiao Zhou ◽  
Yuke Lu ◽  
Yong Zhang

As one of the basic mechanical properties of soil, the creep property of a given type soil is related to stress path, and stress level. In this paper, triaxial shear creep tests under different deviatoric stress levels were performed on both intact sample and the reconstituted sample of clay taken from Hangzhou, China. Based on the Boltzmann linear superposition principle, the creep curves of the clay sample under different levels of deviatoric stress were obtained, and the creep characteristics of the intact sample and the reconstituted sample were compared in both total stress creep analysis and effective stress creep analysis. Furthermore, the creep curves were fitted using a hyperbolic creep model. The results show that (1) under the same stress level, the creep of intact sample evolves more than that of reconstituted sample; (2) the hyperbolic creep model is suited to describe the creep characteristics of intact and reconstituted clay, and the model parameters A s and B s can be linearly correlated to the stress level D r ; (3) for the application of the hyperbolic model, the total stress analysis works better, and the model parameters A s and B s can be determined by a linear relationship with Dr.


2021 ◽  
pp. 003329412110434
Author(s):  
Maja Smrdu ◽  
Ana Kuder ◽  
Eva Turk ◽  
Tatjana Čelik ◽  
Janko Šet ◽  
...  

The present study examines the role of personality traits, interpersonal relationships, and sociodemographic factors on perceived stress, related to COVID-19, and compliance with measures to mitigate its spread. Data were collected in the midst of the ‘first wave’ lockdown, with the survey completed in full by 963 participants. We measured stress, directly related to the pandemic, rather than general stress, and were able to distinguish between symptoms of emotional, behavioural, cognitive, physical stress, and alienation with high concordance. We included personality scoring with standardized T-scores, allowing for cross-study comparison, and a broader questionnaire on the participants’ support for COVID-19 mitigation measures. Results of the multiple regression models indicated that low emotional stability and introversion, and high conscientiousness, common conflicts with loved ones, and some demographics (female gender, middle age, chronic health problems) correspond to elevated stress. Conscientiousness was positively associated with total stress and some of its components, whereas opposite results were found for emotional stability. Extraversion was negatively correlated to total stress, its emotional and physical components, and alienation. Surprisingly, increased stress was not related to greater measure adherence. The present results shed light on how personality, interpersonal relationships, and sociodemographic factors influence people’s stress response during a pandemic.


Author(s):  
Osama Drbe

Piles are used to transfer loads of structures to deeper and stronger soil layers through skin friction and/or end bearing. Surcharge loads, site grading, or dewatering may induce downward movement of soil adjacent to piles installed in a compressible medium. This movement creates negative skin friction stresses acting downward at the pile-soil interface, which applies additional loads “drag forces” to the pile causing a maximum axial load in the pile shaft at the “neutral plane”. To evaluate the development of drag forces, a comprehensive field monitoring program was conducted over four years for three instrumented abutment H-piles as part of a three-span bridge project. The soil settlement and changes in pore water pressure in the soil adjacent to the piles due to the construction of an approach embankment were monitored using multiple-point extensometers and vibrating wire piezometers. The piles’ elastic settlement and strains were measured using single-point extensometers and vibrating wire strain gauges. The field measurements are presented and discussed in terms of responses time histories and load distribution along one pile shaft. In addition, the calculated forces from vibrating wire strain gauges are compared with the unified design method prediction considering the total stress method (α-method) for cohesive soils. The results show that the maximum drag force was developed after the complete dissipation of excess pore water pressure and that the location of neutral plane varied during the embankment construction stages. Employing the total stress method in the unified design method provided a reasonable prediction of the drag force and the neutral plane’s location.


2021 ◽  
Vol 44 (3) ◽  
pp. 1-18
Author(s):  
Sai Vanapalli ◽  
Won-Taek Oh

Bearing capacity of saturated soils can be estimated using effective or total stress approaches extending the concepts proposed by Terzaghi (1943) and Skempton (1948), respectively. Recent studies have shown that similar approaches (i.e., Modified Effective Stress Approach, MESA and Modified Total Stress Approach, MTSA) can be used for interpretation and prediction of the bearing capacity of unsaturated soils by considering the influence of matric suction. However, comprehensive discussion for the application of the MESA and the MTSA in geotechnical engineering practice applications is lacking in the literature. For this reason, in this state-of-the-art paper, the background associated with the MESA and MTSA is first introduced. The analytical and numerical methods available for the prediction of the bearing capacity of unsaturated soils from the literature are revisited. The various available methods are explained by categorizing them into two groups: MESA and MTSA along with their applications using examples. The focus of this state-of-the-art paper is directed towards not only for providing tools for rational understanding but also for better prediction of the bearing capacity of unsaturated soils for extending them in geotechnical engineering practice applications.


Sign in / Sign up

Export Citation Format

Share Document