scholarly journals THEORY OF GUIDED-WAVE MAGNETOOPTIC BRAGG DIFFRACTION IN YIG-GGG WAVEGUIDE UNDER INCLINED BIAS MAGNETIC FIELD

1998 ◽  
Vol 47 (7) ◽  
pp. 1213
Author(s):  
LIU GONG-QIANG ◽  
C.S.TSAI
1997 ◽  
Vol 71 (25) ◽  
pp. 3715-3717 ◽  
Author(s):  
C. S. Tsai ◽  
Y. S. Lin ◽  
J. Su ◽  
S. R. Calciu

2020 ◽  
Vol 64 (1-4) ◽  
pp. 335-342
Author(s):  
Yun Sun ◽  
Jiang Xu ◽  
Chaoyue Hu ◽  
Guang Chen ◽  
Yunfei Li

The flexural mode guided waves of pipes which are sensitive the axial crack and suitable for wave focused gain more attention recently. In this paper, a non-contact flexural mode guided wave transducer based on magnetostrictive effect is provided for pipes. Based on the magnetostrictive transduction principle and the wave structure of the flexural mode guided wave, the sensing method for generating and receiving the flexural mode guided waves based on magnetostrictive effect is obtained. According to the theoretical analysis, a non-contact magnetostrictive transducer for F (3, m) mode guided waves is given. Six permanent magnets which are evenly distributed in the circumferential direction of the pipe and arranged in opposite polarities are employed to provide the bias magnetic field in the circumferential direction. A solenoid coil is employed to induce the axial alternating magnetic field. The bias magnetic field distribution of the flexural mode guided wave in the pipeline is analyzed by the finite element simulation. The mode of the transduction guided wave in the pipe is verified by experiments based on the dispersion curves.


2015 ◽  
Vol 394 ◽  
pp. 416-421 ◽  
Author(s):  
Guangming Xue ◽  
Zhongbo He ◽  
Dongwei Li ◽  
Zhaoshu Yang ◽  
Zhenglong Zhao

Author(s):  
Andrzej Rysak ◽  
Magdalena Gregorczyk

Investigations of systems with an active magnetostrictive element generally assume the presence of an external homogeneous bias magnetic field. This article, however, presents the results of a study investigating a bimorph magnetostrictive-aluminium beam vibrating in a non-homogeneous bias field. By comparing results obtained under different operating conditions of the system, the combined effect of the non-linear beam stress and the non-homogeneous external magnetic field on the dynamics of the Villari phenomenon is determined. The preliminary results prove that the application of non-linear magnetic fields to the magnetostrictive devices ensures the extension of energy harvesting bandwidth of these devices and can be used to improve their control possibilities. A study of time series and hysteresis loops provides more detailed information about the non-linear magnetization and dynamics of the system.


Sign in / Sign up

Export Citation Format

Share Document