Unique dependence of magnetoelectric voltage coefficient on bias magnetic field in Terfenol-D/Pb(Zr,Ti)O3 bi-layered composites

2013 ◽  
Vol 553 ◽  
pp. 86-88 ◽  
Author(s):  
Lei Li ◽  
Xiang Ming Chen ◽  
Hai Yan Zhu
2011 ◽  
Vol 464 ◽  
pp. 448-452
Author(s):  
Bing Hao Bao ◽  
Xing Cheng Tian

Magnetoelectric(ME) effect in magnetoelectric laminate materials have potential application in many fields. In this paper, Fe78Si9B13 amorphous ribbons /PZT/amorphous ribbons sandwich structure laminate materials were fabricated. By theoretical analysis and experimental verification, we studied systemically on the characteristics of the magnetoelecric laminate materials, such as optimized bias magnetic field of the ME effect, ME voltage coefficient at low frequency and the resonant frequency of the magnetoelecric laminate element. ME effect can be used to develop new ac magnetic sensor and other devices.


Aerospace ◽  
2003 ◽  
Author(s):  
Nersesse Nersessian ◽  
Siu Wing Or ◽  
Gregory P. Carman

A 1200m V/cmOe magnetoelectric voltage coefficient was measured in a Terfenol-D/epoxy and PZT-5H[2-2] composite. The magnetoelectric effect is a result of a coupling between the magnetostrictive (Terfenol-D/epoxy) and piezoelectric (PZT-5H) layers. The coupling was achieved mechanically by bonding the piezoelectric layer in between two magnetostrictive layers. The maximum in magnetoelectric voltage coefficient was measured at a frequency of 8Hz and a bias magnetic field of 103kA/m. The magnetoelectric voltage coefficient was observed to be highly dependent upon the bias magnetic field.


2015 ◽  
Vol 394 ◽  
pp. 416-421 ◽  
Author(s):  
Guangming Xue ◽  
Zhongbo He ◽  
Dongwei Li ◽  
Zhaoshu Yang ◽  
Zhenglong Zhao

Author(s):  
Andrzej Rysak ◽  
Magdalena Gregorczyk

Investigations of systems with an active magnetostrictive element generally assume the presence of an external homogeneous bias magnetic field. This article, however, presents the results of a study investigating a bimorph magnetostrictive-aluminium beam vibrating in a non-homogeneous bias field. By comparing results obtained under different operating conditions of the system, the combined effect of the non-linear beam stress and the non-homogeneous external magnetic field on the dynamics of the Villari phenomenon is determined. The preliminary results prove that the application of non-linear magnetic fields to the magnetostrictive devices ensures the extension of energy harvesting bandwidth of these devices and can be used to improve their control possibilities. A study of time series and hysteresis loops provides more detailed information about the non-linear magnetization and dynamics of the system.


2014 ◽  
Vol 59 (3) ◽  
pp. 1011-1015
Author(s):  
P. Guzdek ◽  
M. Sikora ◽  
Ł. Góra ◽  
Cz. Kapusta

Abstract The magnetoelectric effect in multiferroic materials has been widely studied for its fundamental interest and practical applications. The magnetoelectric effect observed for single phase materials like Cr2O3, BiFeO3, and Pb(Fe0.5Nb0.5)O3 is usually small. A much larger effect can be obtained in composites consisting of magnetostrictive and piezoelectric phases. This paper investigates the magnetoelectric effect of a multilayer (laminated) structure consisting of 6 nickel ferrite and 7 PFN relaxor layers. It describes the synthesis and tape casting process for Ni0.3Zn0.62Cu0.08Fe2O4 ferrite and relaxor PbFe0.5Nb0.5O3 (PFN). Magnetic hysteresis, ZFC - FC curves and dependencies of magnetization versus temperature for PFN relaxor and magnetoelectric composite were measured with a vibrating sample magnetometer (VSM) in an applied magnetic field up to 85 kOe at a temperature range of 10 – 400 K. Magnetoelectric effect at room temperature was investigated as a function of a static magnetic field (0.3 - 6.5 kOe) and the frequency of sinusoidal magnetic field (0.01 - 6.5 kHz). At lower magnetic field, the magnetoelectric coefficient increases slightly before reaching a maximum and then decreases. The magnetoelectric coefficient aME increases continuously as the frequency is raised, although this increase is less pronounced in the 1-6.5 kHz range. Maximum values of the magnetoelectric coefficient attained for the layered composites exceed about 50 mV/(Oe cm).


Author(s):  
Roger Guiel ◽  
Jason L. Dikes ◽  
Constantin Ciocanel ◽  
Heidi P. Feigenbaum

Magnetic shape memory alloys are a relatively new class of materials that are suitable for actuation, sensing, and power harvesting. The power harvesting capability comes from the change in magnetization that the material exhibits when internal martensitic variants change orientation. In typical power harvesting tests, the material is loaded with axial compression in the presence of a bias magnetic field applied normal to the compressive loading direction. However, previous results suggest that having a component of the bias magnetic field applied axially, parallel to the compressive stress, can increase the power output of MSMAs. Furthermore, most of the MSMAs power harvesting results reported to date focused on the open circuit voltage that the material can generate during cyclic loading. However, this information is not indicative of the true power harvesting capability of the material and one has to focus on the power output of the material instead. This paper presents voltage trends and power output data for a MSMA sample exposed simultaneously to a cyclic compressive stress and bi-axial magnetic field.


2014 ◽  
Vol 1061-1062 ◽  
pp. 184-188 ◽  
Author(s):  
Hong Xia Cao ◽  
Qian Shi ◽  
Jia Yang You ◽  
Yu Fang ◽  
Huang Sun

By using a elastic mechanics model the transverse magnetoelectric voltage coefficient of magnetostrictive-piezoelectric bilayer is derived according to the constitutive equations. The transverse magnetoelectric coupling of nickel zinc ferrite-lead zirconate titanate (Ni0.8Zn0.2Fe2O4–Pb (Zr,Ti)O3, NZFO-PZT) layered composites were calculated by using the corresponding material parameters of individual phases. NZFO samples have been synthesized with sol–gel technique. Layered composites NZFO-PZT and NZFO-PZT-NZFO have been fabricated by binding discs of NZFO and commercially available PZT, and the transverse magnetoelectric effect have been investigated. The peak value of transverse magnetoelectric voltage coefficient for NZFO-PZT-NZFO trilayer reaches 252.4 mV/cmOe under a bias magnetic field of about 320 Oe, which is about three times as large as that of NZFO-PZT bilayer. The interface coupling parameter of trilayer is significantly higher than that of bilayer.


Sign in / Sign up

Export Citation Format

Share Document