scholarly journals Author response: Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream

Author(s):  
Chris B Martin ◽  
Danielle Douglas ◽  
Rachel N Newsome ◽  
Louisa LY Man ◽  
Morgan D Barense
2017 ◽  
Author(s):  
Chris B Martin ◽  
Danielle Douglas ◽  
Rachel N Newsome ◽  
Louisa LY Man ◽  
Morgan D Barense

AbstractA tremendous body of research in cognitive neuroscience is aimed at understanding how object concepts are represented in the human brain. However, it remains unknown whether and where the visual and abstract conceptual features that define an object concept are integrated. We addressed this issue by comparing the neural pattern similarities among object-evoked fMRI responses with behavior-based models that independently captured the visual and conceptual similarities among these stimuli. Our results revealed evidence for distinctive coding of visual features in lateral occipital cortex, and conceptual features in the temporal pole and parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was highlighted by results from a searchlight analysis. Taken together, our findings suggest that perirhinal cortex uniquely supports the representation of fully-specified object concepts through the integration of their visual and conceptual features.


2021 ◽  
Author(s):  
Moritz Wurm ◽  
Alfonso Caramazza

The ventral visual stream is conceived as a pathway for object recognition. However, we also recognize the actions an object can be involved in. Here, we show that action recognition relies on a pathway in lateral occipitotemporal cortex, partially overlapping and topographically aligned with object representations that are precursors for action recognition. By contrast, object features that are more relevant for object recognition, such as color and texture, are restricted to medial areas of the ventral stream. We argue that the ventral stream bifurcates into lateral and medial pathways for action and object recognition, respectively. This account explains a number of observed phenomena, such as the duplication of object domains and the specific representational profiles in lateral and medial areas.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Chris B Martin ◽  
Danielle Douglas ◽  
Rachel N Newsome ◽  
Louisa LY Man ◽  
Morgan D Barense

A significant body of research in cognitive neuroscience is aimed at understanding how object concepts are represented in the human brain. However, it remains unknown whether and where the visual and abstract conceptual features that define an object concept are integrated. We addressed this issue by comparing the neural pattern similarities among object-evoked fMRI responses with behavior-based models that independently captured the visual and conceptual similarities among these stimuli. Our results revealed evidence for distinctive coding of visual features in lateral occipital cortex, and conceptual features in the temporal pole and parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was highlighted by results from a searchlight analysis. Taken together, our findings suggest that perirhinal cortex uniquely supports the representation of fully specified object concepts through the integration of their visual and conceptual features.


2018 ◽  
Author(s):  
Mark AG Eldridge ◽  
Narihisa Matsumoto ◽  
John H Wittig ◽  
Evan C Masseau ◽  
Richard C Saunders ◽  
...  

2019 ◽  
Author(s):  
Sushrut Thorat

A mediolateral gradation in neural responses for images spanning animals to artificial objects is observed in the ventral temporal cortex (VTC). Which information streams drive this organisation is an ongoing debate. Recently, in Proklova et al. (2016), the visual shape and category (“animacy”) dimensions in a set of stimuli were dissociated using a behavioural measure of visual feature information. fMRI responses revealed a neural cluster (extra-visual animacy cluster - xVAC) which encoded category information unexplained by visual feature information, suggesting extra-visual contributions to the organisation in the ventral visual stream. We reassess these findings using Convolutional Neural Networks (CNNs) as models for the ventral visual stream. The visual features developed in the CNN layers can categorise the shape-matched stimuli from Proklova et al. (2016) in contrast to the behavioural measures used in the study. The category organisations in xVAC and VTC are explained to a large degree by the CNN visual feature differences, casting doubt over the suggestion that visual feature differences cannot account for the animacy organisation. To inform the debate further, we designed a set of stimuli with animal images to dissociate the animacy organisation driven by the CNN visual features from the degree of familiarity and agency (thoughtfulness and feelings). Preliminary results from a new fMRI experiment designed to understand the contribution of these non-visual features are presented.


NeuroImage ◽  
2016 ◽  
Vol 128 ◽  
pp. 316-327 ◽  
Author(s):  
Marianna Boros ◽  
Jean-Luc Anton ◽  
Catherine Pech-Georgel ◽  
Jonathan Grainger ◽  
Marcin Szwed ◽  
...  

2018 ◽  
Author(s):  
Simona Monaco ◽  
Giulia Malfatti ◽  
Alessandro Zendron ◽  
Elisa Pellencin ◽  
Luca Turella

AbstractPredictions of upcoming movements are based on several types of neural signals that span the visual, somatosensory, motor and cognitive system. Thus far, pre-movement signals have been investigated while participants viewed the object to be acted upon. Here, we studied the contribution of information other than vision to the classification of preparatory signals for action, even in absence of online visual information. We used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) to test whether the neural signals evoked by visual, memory-based and somato-motor information can be reliably used to predict upcoming actions in areas of the dorsal and ventral visual stream during the preparatory phase preceding the action, while participants were lying still. Nineteen human participants (nine women) performed one of two actions towards an object with their eyes open or closed. Despite the well-known role of ventral stream areas in visual recognition tasks and the specialization of dorsal stream areas in somato-motor processes, we decoded action intention in areas of both streams based on visual, memory-based and somato-motor signals. Interestingly, we could reliably decode action intention in absence of visual information based on neural activity evoked when visual information was available, and vice-versa. Our results show a similar visual, memory and somato-motor representation of action planning in dorsal and ventral visual stream areas that allows predicting action intention across domains, regardless of the availability of visual information.


Sign in / Sign up

Export Citation Format

Share Document