ADRENAL GLAND SIZE AS AN INDEX OF ADRENOCORTICAL SECRETION RATE IN THE CALIFORNIA GROUND SQUIRREL

1972 ◽  
Vol 8 (1) ◽  
pp. 19-23 ◽  
Author(s):  
LOWELL ADAMS ◽  
SATOSHI HANE
1976 ◽  
Vol 165 (2) ◽  
pp. 209-227 ◽  
Author(s):  
Gerald H. Jacobs ◽  
Steven K. Fisher ◽  
Don H. Anderson ◽  
Martin S. Silverman

1978 ◽  
Vol 235 (5) ◽  
pp. E525
Author(s):  
S Lun ◽  
E A Espiner ◽  
D S Hart

Conscious trained sheep with adrenal gland autotransplants in cervical skin loops were used to study adrenocortical metabolism and clearance of angiotensin (AII) administered by constant systemic infusion. For comparative purposes similar experiments were undertaken in five control sheep with skin loops but no cervical adrenal tissue. During AII infusions (0.33 microgram/min for 30 min), loop venous-arterial AII ratios (0.42--0.62 were similar in both groups of sheep. Measured AII clearances across the skin loop in sheep with and without adrenal transplants were 400--600 and 100--150 pg/min, respectively, which correlated with blood flow (r = 0.79), but showed no relation to aldosterone secretion rate. Analysis of AII immunoreactive fragments showed similar proportions of octa-, hepta-, and hexapeptide fractions (64, 26, and 5%, respectively) in adrenal arterial, adrenal venous, and systemic venous plasma. These studies do not support selective heptapeptide uptake or metabolism by adrenal tissue in vivo and indicate that specific adrenal binding of AII is likely to be less than 400 pg/min at arterial AII concentrations approximating 120 pg/ml.


1984 ◽  
Vol 52 (6) ◽  
pp. 1200-1212 ◽  
Author(s):  
M. E. McCourt ◽  
G. H. Jacobs

Directional units in the optic nerve of the California ground squirrel (Spermophilus beecheyi) were studied with respect to their response to diffuse light, preferred directions of motion, tuning for preferred direction, the relationship between spatial and directional tuning characteristics, and receptive-field size and areal summating properties. Directional units in the ground squirrel optic nerve are of the “on-off” type. No purely on or off units were encountered in a sample of 356 directionally selective fibers. The distribution of preferred directions of image motion for 356 units was significantly anisotropic; greater than 50% of the directional units prefer motion in the direction of the superior-nasal visual quadrant. Mean directional bandwidth, measured at half-amplitude response, for 39 units was 88.5 degrees. The distribution of directional bandwidths suggests that two subpopulations of directional units may exist a broadly tuned (106.4 degrees bandwidth) group preferring image motion in the superior-nasal direction, and a narrowly tuned group (59.9 degrees bandwidth) with a uniform distribution of preferred direction. Tuning for direction of motion and for spatial frequency were significantly positively correlated in a sample of 35 directional units. Area-vs.-response measures for directional units show that they possess excitatory discharge centers with a concentric antagonistic surround, plus a larger suppressive surround activated specifically by moving luminance contours, which may be asymmetric. Critical activation areas for directional units, as measured along orthogonal orientations, were highly positively correlated. This suggests that these receptive fields possess the property of linear spatial summation, not of luminance flux, but of areas of moving luminance contours.


1989 ◽  
Vol 70 (2) ◽  
pp. 428-431 ◽  
Author(s):  
T. P. Salmon ◽  
R. E. Marsh

Nature ◽  
1946 ◽  
Vol 158 (4022) ◽  
pp. 771-772
Author(s):  
E. HINDLE

1960 ◽  
Vol 38 (1) ◽  
pp. 1069-1075
Author(s):  
O. J. Lucis ◽  
E. H. Venning

Porcine, monkey, and human growth hormone have no effect on the in vitro secretion of aldosterone by the rat adrenal gland. When monkey growth hormone is injected into hypophysectomized rats, the adrenals of these animals secrete, under in vitro conditions, increased amounts of aldosterone with no change in the secretion rate of corticosterone. The plasma of these rats contains a substance which appears to stimulate the secretion of aldosterone in the adrenals of normal rats.


Sign in / Sign up

Export Citation Format

Share Document