scholarly journals Iterative improvement in the automatic modular design of robot swarms

2020 ◽  
Vol 6 ◽  
pp. e322
Author(s):  
Jonas Kuckling ◽  
Thomas Stützle ◽  
Mauro Birattari

Iterative improvement is an optimization technique that finds frequent application in heuristic optimization, but, to the best of our knowledge, has not yet been adopted in the automatic design of control software for robots. In this work, we investigate iterative improvement in the context of the automatic modular design of control software for robot swarms. In particular, we investigate the optimization of two control architectures: finite-state machines and behavior trees. Finite state machines are a common choice for the control architecture in swarm robotics whereas behavior trees have received less attention so far. We compare three different optimization techniques: iterative improvement, Iterated F-race, and a hybridization of Iterated F-race and iterative improvement. For reference, we include in our study also (i) a design method in which behavior trees are optimized via genetic programming and (ii) EvoStick, a yardstick implementation of the neuro-evolutionary swarm robotics approach. The results indicate that iterative improvement is a viable optimization algorithm in the automatic modular design of control software for robot swarms.

2020 ◽  
Vol 6 ◽  
pp. e314
Author(s):  
Antoine Ligot ◽  
Jonas Kuckling ◽  
Darko Bozhinoski ◽  
Mauro Birattari

We investigate the possibilities, challenges, and limitations that arise from the use of behavior trees in the context of the automatic modular design of collective behaviors in swarm robotics. To do so, we introduce Maple, an automatic design method that combines predefined modules—low-level behaviors and conditions—into a behavior tree that encodes the individual behavior of each robot of the swarm. We present three empirical studies based on two missions: aggregation and Foraging. To explore the strengths and weaknesses of adopting behavior trees as a control architecture, we compare Maple with Chocolate, a previously proposed automatic design method that uses probabilistic finite state machines instead. In the first study, we assess Maple’s ability to produce control software that crosses the reality gap satisfactorily. In the second study, we investigate Maple’s performance as a function of the design budget, that is, the maximum number of simulation runs that the design process is allowed to perform. In the third study, we explore a number of possible variants of Maple that differ in the constraints imposed on the structure of the behavior trees generated. The results of the three studies indicate that, in the context of swarm robotics, behavior trees might be appealing but in many settings do not produce better solutions than finite state machines.


Sign in / Sign up

Export Citation Format

Share Document