User Selection Scheme for Uplink MU-MIMO Systems with HARQ

Author(s):  
Sangjoon Park
2018 ◽  
Vol 218 ◽  
pp. 03010 ◽  
Author(s):  
Vera Noviana Sulistyawan ◽  
Rina Pudji Astuti ◽  
Arfianto Fahmi

Massive MIMO with multiple BS antennas can give simultaneous service for multiple user equipments (UEs) that are widely considered in massive connectivity to meet high data rate requirements. User selection is critical to optimize the overall performance of MIMO systems in various scenarios and has been extensively studied in cellular networks to guarantee service for users. In the previous study, location-dependent user selection (LUS) had extremely low computational complexity which is capable to enhance sum rate performance, but there are many environmental condition assumptions that make this algorithm does not reflect real conditions. In this research, we proposed modified LUS with approximations of sum rate in large system regimes by adding the sum ergodic of the distance from one user to another which enhance sum rate performance. In addition, we vary the user environment that was ignored in previous research by varying the path loss exponent values. In this research, we focus modify on sub-urban areas with each UEs having different environmental conditions. The selection scheme is equipped with spatial correlation fading on the transmitter side MIMO antenna. The simulation shows an increase in sum rate between 0.0012 to 0.3935 in perfect CSI. For the imperfect CSI with antenna correlation coefficient for power at 30 dBm is 0.5 when 32x64 antennas is 14 optimal active UEs with sum rate is 23.4207 bps/Hz. For cases where the user is located in different positions with different environmental circumstances, with 32x64 antennas showing the highest sum rate is 24.8436 bps/Hz with 17 optimal UEs.


Author(s):  
Xing Zhang ◽  
Ashutosh Sabharwal

AbstractUser subset selection requires full downlink channel state information to realize effective multi-user beamforming in frequency-division duplexing (FDD) massive multi-input multi-output (MIMO) systems. However, the channel estimation overhead scales with the number of users in FDD systems. In this paper, we propose a novel propagation domain-based user selection scheme, labeled as zero-measurement selection, for FDD massive MIMO systems with the aim of reducing the channel estimation overhead that scales with the number of users. The key idea is to infer downlink user channel norm and inter-user channel correlation from uplink channel in the propagation domain. In zero-measurement selection, the base-station performs downlink user selection before any downlink channel estimation. As a result, the downlink channel estimation overhead for both user selection and beamforming is independent of the total number of users. Then, we evaluate zero-measurement selection with both measured and simulated channels. The results show that zero-measurement selection achieves up to 92.5% weighted sum rate of genie-aided user selection on the average and scales well with both the number of base-station antennas and the number of users. We also employ simulated channels for further performance validation, and the numerical results yield similar observations as the experimental findings.


Sign in / Sign up

Export Citation Format

Share Document