Mass Extinction of Marine Biota at the Boundary of the Late Ordovician and Silurian in Response to Changes in Environmental Conditions

2014 ◽  
Vol 54 (6) ◽  
pp. 825-832
Author(s):  
M. S. Barash
2021 ◽  
pp. 1-27
Author(s):  
Sofia Pereira ◽  
Jorge Colmenar ◽  
Jan Mortier ◽  
Jan Vanmeirhaeghe ◽  
Jacques Verniers ◽  
...  

Abstract The end-Ordovician mass extinction, linked to a major glaciation, led to deep changes in Hirnantian–Rhuddanian biotas. The Hirnantia Fauna, the first of two Hirnantian survival brachiopod-dominated communities, characterizes the lower–mid Hirnantian deposits globally, and its distribution is essential to understand how the extinction took place. In this paper, we describe, illustrate, and discuss the first macrofossiliferous Hirnantia Fauna assemblage from Belgium, occurring in the Tihange Member of the Fosses Formation at Tihange (Huy), within the Central Condroz Inlier. Six fossiliferous beds have yielded a low-diversity, brachiopod-dominated association. In addition to the brachiopods (Eostropheodonta hirnantensis, Plectothyrella crassicosta, Hirnantia sp., and Trucizetina? sp.), one trilobite (Mucronaspis sp.), four pelmatozoans (Xenocrinus sp., Cyclocharax [col.] paucicrenulatus, Conspectocrinus [col.] celticus, and Pentagonocyclicus [col.] sp.), three graptolites (Cystograptus ancestralis, Normalograptus normalis, and ?Metabolograptus sp.), together with indeterminate machaeridians and bryozoans were identified. The graptolite assemblage, from the Akidograptus ascensus-Parakidograptus acuminatus Biozone, indicates an early Rhuddanian (Silurian) age, and thus, an unexpectedly late occurrence of a typical Hirnantia Fauna. This Belgian association may represent an additional example of relict Hirnantia Fauna in the Silurian, sharing characteristics with the only other known from Rhuddanian rocks at Yewdale Beck (Lake District, England), although reworking has not been completely ruled out. The survival of these Hirnantian taxa into the Silurian might be linked to delayed post-glacial effects of rising temperature and sea-level, which may have favored the establishment of refugia in these two particular regions that were paleogeographically close during the Late Ordovician–early Silurian.


Geology ◽  
2021 ◽  
Author(s):  
Daoliang Chu ◽  
Jacopo Dal Corso ◽  
Wenchao Shu ◽  
Song Haijun ◽  
Paul B., Wignall ◽  
...  

Teratological spores and pollen are widespread in sediments that record the Permian- Triassic mass extinction. The malformations are thought to be the result of extreme environmental conditions at that time, but the mutagenic agents and the precise timing of the events remain unclear. We examined the abundance of teratological sporomorphs and metal concentrations in a Permian-Triassic tropical peatland succession of southwestern China. We find a significant peak of spore tetrads of lycopsid plants (as much as 19% of all sporomorphs) coeval with increases in Cu and Hg concentrations above the main terrestrial extinction interval, which marks the loss of Permian Gigantopteris forests, increased wildfire activity, and the disappearance of coal beds. Thus, in tropical peatlands, mutagenesis affected only surviving plants. Mutagenesis was likely caused by metal toxicity, linked to increased Hg and Cu loading, but was not itself a direct cause of the terrestrial crisis.


2016 ◽  
Vol 90 (6) ◽  
pp. 1138-1147 ◽  
Author(s):  
William I. Ausich ◽  
Mark A. Wilson

AbstractRhuddanian crinoid faunas are poorly known globally, making this new fauna from the Hilliste Formation of western Estonian especially significant. The Hilliste fauna is the oldest Silurian fauna known from the Baltica paleocontinent, thus this is the first example of the crinoid recovery fauna after the Late Ordovician mass extinction. Hiiumaacrinus vinni n. gen. n. sp., Protaxocrinus estoniensis n. sp., Eomyelodactylus sp., calceocrinids, and five holdfast types are reported here. Although the fauna has relatively few taxa, it is among the most diverse Rhuddanian faunas known. Similar to other Rhuddanian crinoid faunas elsewhere, the Hilliste crinoid fauna contains crinoids belonging the Dimerocrinitidae, Taxocrinidae, Calceocrinidae, and Myelodactylidae; most elements of the new fauna are quite small, perhaps indicative of the Lilliput Effect.


Geology ◽  
2018 ◽  
Vol 46 (6) ◽  
pp. 535-538 ◽  
Author(s):  
Caineng Zou ◽  
Zhen Qiu ◽  
Simon W. Poulton ◽  
Dazhong Dong ◽  
Hongyan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document