scholarly journals Metal-induced stress in survivor plants following the end-Permian collapse of land ecosystems

Geology ◽  
2021 ◽  
Author(s):  
Daoliang Chu ◽  
Jacopo Dal Corso ◽  
Wenchao Shu ◽  
Song Haijun ◽  
Paul B., Wignall ◽  
...  

Teratological spores and pollen are widespread in sediments that record the Permian- Triassic mass extinction. The malformations are thought to be the result of extreme environmental conditions at that time, but the mutagenic agents and the precise timing of the events remain unclear. We examined the abundance of teratological sporomorphs and metal concentrations in a Permian-Triassic tropical peatland succession of southwestern China. We find a significant peak of spore tetrads of lycopsid plants (as much as 19% of all sporomorphs) coeval with increases in Cu and Hg concentrations above the main terrestrial extinction interval, which marks the loss of Permian Gigantopteris forests, increased wildfire activity, and the disappearance of coal beds. Thus, in tropical peatlands, mutagenesis affected only surviving plants. Mutagenesis was likely caused by metal toxicity, linked to increased Hg and Cu loading, but was not itself a direct cause of the terrestrial crisis.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Emiko Okabe ◽  
Masaharu Uno ◽  
Saya Kishimoto ◽  
Eisuke Nishida

AbstractEnvironmental conditions can cause phenotypic changes, part of which can be inherited by subsequent generations via soma-to-germline communication. However, the signaling molecules or pathways that mediate intertissue communication remain unclear. Here, we show that intertissue small RNA communication systems play a key role in the acquisition and inheritance of hormesis effects – stress-induced stress resistance – in Caenorhabditis elegans. The miRNA-processing enzyme DRSH-1 is involved in both the acquisition and the inheritance of hormesis, whereas worm-specific Argonaute (WAGO) proteins, which function with endo-siRNAs, are involved only in its inheritance. Further analyses demonstrate that the miRNA production system in the neuron and the small RNA transport machinery in the intestine are both essential for its acquisition and that both the transport of small RNAs in the germline and the germline Argonaute HRDE-1 complex are required for its inheritance. Our results thus demonstrate that overlapping and distinct roles of small RNA systems in the acquisition and inheritance of hormesis effects.


2018 ◽  
Vol 7 (2) ◽  
pp. 117-129 ◽  
Author(s):  
Juan Wang ◽  
Long-Yi Shao ◽  
Hao Wang ◽  
Baruch Spiro ◽  
David Large

Sign in / Sign up

Export Citation Format

Share Document