Addressing Reserves and Pension Funds through Gambler’s Ruin and Generalized Brownian Motion Process

2021 ◽  
pp. 15-24
Author(s):  
Manuel Alberto M. Ferreira ◽  
José António Filipe
2000 ◽  
Vol 23 (11) ◽  
pp. 759-776 ◽  
Author(s):  
Seung Jun Chang ◽  
Soon Ja Kang ◽  
David Skoug

We use a generalized Brownian motion process to define a generalized Feynman integral and a conditional generalized Feynman integral. We then establish the existence of these integrals for various functionals. Finally we use the conditional generalized Feynman integral to derive a Schrödinger integral equation.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jae Gil Choi ◽  
Hyun Soo Chung ◽  
Seung Jun Chang

We define two sequential transforms on a function spaceCa,b[0,T]induced by generalized Brownian motion process. We then establish the existence of the sequential transforms for functionals in a Banach algebra of functionals onCa,b[0,T]. We also establish that any one of these transforms acts like an inverse transform of the other transform. Finally, we give some remarks about certain relations between our sequential transforms and other well-known transforms onCa,b[0,T].


Filomat ◽  
2016 ◽  
Vol 30 (6) ◽  
pp. 1615-1624
Author(s):  
Seung Chang ◽  
Hyun Chung ◽  
Ae Ko ◽  
Jae Choi

In this article, we introduce a generalized analytic Fourier-Feynman transform and a multiple generalized analytic Fourier-Feynman transform with respect to Gaussian processes on the function space Ca,b[0,T] induced by generalized Brownian motion process. We derive a rotation formula for our multiple generalized analytic Fourier-Feynman transform.


2002 ◽  
Vol 29 (10) ◽  
pp. 591-608 ◽  
Author(s):  
Seung Jun Chang ◽  
Jae Gil Choi

We use a generalized Brownian motion process to define the generalized Fourier-Feynman transform, the convolution product, and the first variation. We then examine the various relationships that exist among the first variation, the generalized Fourier-Feynman transform, and the convolution product for functionals on function space that belong to a Banach algebraS(Lab[0,T]). These results subsume similar known results obtained by Park, Skoug, and Storvick (1998) for the standard Wiener process.


1993 ◽  
Vol 30 (01) ◽  
pp. 17-27
Author(s):  
Aimé Lachal

Let be the Brownian motion process starting at the origin, its primitive and Ut = (Xt+x + ty, Bt + y), , the associated bidimensional process starting from a point . In this paper we present an elementary procedure for re-deriving the formula of Lefebvre (1989) giving the Laplace–Fourier transform of the distribution of the couple (σ α, Uσa ), as well as Lachal's (1991) formulae giving the explicit Laplace–Fourier transform of the law of the couple (σ ab, Uσab ), where σ α and σ ab denote respectively the first hitting time of from the right and the first hitting time of the double-sided barrier by the process . This method, which unifies and considerably simplifies the proofs of these results, is in fact a ‘vectorial' extension of the classical technique of Darling and Siegert (1953). It rests on an essential observation (Lachal (1992)) of the Markovian character of the bidimensional process . Using the same procedure, we subsequently determine the Laplace–Fourier transform of the conjoint law of the quadruplet (σ α, Uσa, σb, Uσb ).


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
ZaiTang Huang ◽  
ChunTao Chen

We study the stability, attractors, and bifurcation of stochastic Rayleigh-van der Pol equations with jumps. We first established the stochastic stability and the large deviations results for the stochastic Rayleigh-van der Pol equations. We then examine the existence limit circle and obtain some new random attractors. We further establish stochastic bifurcation of random attractors. Interestingly, this shows the effect of the Poisson noise which can stabilize or unstabilize the system which is significantly different from the classical Brownian motion process.


1993 ◽  
Vol 30 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Aimé Lachal

Let be the Brownian motion process starting at the origin, its primitive and Ut = (Xt+x + ty, Bt + y), , the associated bidimensional process starting from a point . In this paper we present an elementary procedure for re-deriving the formula of Lefebvre (1989) giving the Laplace–Fourier transform of the distribution of the couple (σ α, Uσa), as well as Lachal's (1991) formulae giving the explicit Laplace–Fourier transform of the law of the couple (σ ab, Uσab), where σ α and σ ab denote respectively the first hitting time of from the right and the first hitting time of the double-sided barrier by the process . This method, which unifies and considerably simplifies the proofs of these results, is in fact a ‘vectorial' extension of the classical technique of Darling and Siegert (1953). It rests on an essential observation (Lachal (1992)) of the Markovian character of the bidimensional process .Using the same procedure, we subsequently determine the Laplace–Fourier transform of the conjoint law of the quadruplet (σ α, Uσa, σb, Uσb).


Sign in / Sign up

Export Citation Format

Share Document