scholarly journals Effect of Variable Viscosity and Thermal Conductivity on MHD Natural Convection Flow along a Vertical Flat Plate

Author(s):  
Sree Pradip Kumer Sarker ◽  
Md. M. Alam

Free convection flow around a heated vertical flat plate in the presence of a magnetic field is very important from the technical standpoint, and several researchers have studied this issue. The effects of variable viscosity and thermal conductivity on Magneto-Hydrodynamics (MHD) free convection flow over an isothermal vertical plate immersed in a fluid with heat conduction will be studied in this study. The two-dimensional, laminar, and unsteady boundary layer equations are considered in this paper. Using relevant variables, simple governing equations are transformed into non-dimensional governing equations. The implicit finite difference scheme, also known as the Crank-Nicolson scheme, is used to solve these equations numerically. This research looks at viscous incompressible fluids with temperature-dependent viscosity and thermal conductivity. The effect of various parameters on velocity, temperature, local skin friction, and local heat transfer coefficient profiles will be shown in this study, and the results will be compared to those of other researchers. The current numerical results will be compared to the results of previously published works. Figures from the current thesis will be compared to those from previously published works. The outcomes result will be shown in graphs for various values of relevant physical parameters.

Author(s):  
Sirazum Munira ◽  
Sree Pradip Kumer Sarker ◽  
Md. M. Alam ◽  
Minhazul Islam

A heated vertical flat plate in the presence of heat generation is an extremely significant technological issue, and many academics have studied this sort of problem. A vertical plate submerged in a fluid with varying viscosity will be used in this research to investigate the effects of variable viscosity and thermal conductivity on heat generation free convection flow. The boundary layer equations in this section are two-dimensional, laminar, and unstable. The fundamental governing equations are turned into non-dimensional governing equations by using the necessary variables. Using the Crank-Nicolson implicit finite-difference technique, these equations are solved numerically. Viscosity and thermal conductivity are temperature-dependent properties of a viscous, incompressible fluid. Variations in the study's numerous parameters will reveal and compare the velocities, temperatures, local skin friction, and local heat transfer co-efficient profiles. There will be a comparison between the current numerical data and previously reported data findings. Besides that, we'll compare our current work numbers to those of past released publications. Graphs and tables will be used to display the findings for a variety of key physical characteristics.


2011 ◽  
Vol 7 (1) ◽  
pp. 27-36
Author(s):  
Rehena Nasrin ◽  
Md. Abdul Alim

The effects of variable thermal conductivity on the coupling of conduction and Joule heating with MHD free convection flow along a vertical flat plate have been described by this present work. With a goal to attain similarity solutions of the problem posed, the developed equations are made dimensionless by using suitable transformations. The non-dimensional equations are then transformed into non-linear equations by introducing a non- similarity transformation. The resulting non-similar equations together with their corresponding boundary conditions based on conduction and convection are solved numerically by using the implicit finite difference method along with Keller-box scheme. Numerical results for the details of the velocity profile, temperature profile, skin friction coefficient and the surface temperature profile are shown both on graphs and tabular form for different values of the set of parameters entering into the problem.DOI: 10.3329/jname.v7i1.4322 


2013 ◽  
Vol 62 (3) ◽  
Author(s):  
Muhamad Najib Zakaria ◽  
Abid Hussanan ◽  
Ilyas Khan ◽  
Sharidan Shafie

The present paper is on study of the influence of radiation on unsteady free convection flow of Brinkman type fluid near a vertical plate containing a ramped temperature profile. Using the appropriate variables, the basic governing equations are reduced to nondimensional equations valid with the imposed initial and boundary conditions. The exact solutions are obtained by using Laplace transform technique. The influence of radiation near a ramped temperature plate is also compared with the flow near a plate with constant temperature. The numerical computations are carried out for various values of the physical parameters such as velocity, temperature, skin friction and Nusselt number and presented graphically.


Sign in / Sign up

Export Citation Format

Share Document