scholarly journals Modified Ratio Estimators for Population Mean Using Function of Quartiles of Auxiliary Variable

Author(s):  
Subramani J
2013 ◽  
Vol 31 (1) ◽  
pp. 39 ◽  
Author(s):  
M. Iqbal Jeelani ◽  
S. Maqbool

The present paper deals with the estimation of population mean of the study variable using the linear combination of known population values of coefficient of skewness and quartile deviation of auxiliary variable. Two modified ratio estimators for estimation of population mean of the study variable involving the above linear combinations are being used. Mean squared errors and biases up to the first degree of approximation are derived and compared with the proposed modified ratio estimators. The proposed modified ratio estimators perform better than the existing ratio estimators. The empirical study has been carried out in support of the results.


2018 ◽  
Vol 46 (3) ◽  
pp. 453
Author(s):  
Nasir Abbas ◽  
Muhammad Abid ◽  
Muhammad Tahir ◽  
Nasir Abbas ◽  
Zawar Hussain

Author(s):  
Zahid Khan ◽  
Muhammad Ismail

In this paper, we propose modified ratio estimators using some known values of coefficient of variation, coefficient of skewness and coefficient of kurtosis of auxiliary variable under ranked set sampling (RSS).  The mean square error (MSE) of the proposed ratio estimators under ranked set sampling is derived and compared with some existing ratio estimators under RSS. Through this comparison, we prove theoretically that MSC of proposed estimators is less than some existing ratio estimators in RSS under some conditions. The MSE of proposed estimators along with some existing estimator are also calculated numerically. We observe from numerical results that the suggested ratio estimators are more efficient than some existing ratio estimators under RSS.


2021 ◽  
pp. 58-60
Author(s):  
Naziru Fadisanku Haruna ◽  
Ran Vijay Kumar Singh ◽  
Samsudeen Dahiru

In This paper a modied ratio-type estimator for nite population mean under stratied random sampling using single auxiliary variable has been proposed. The expression for mean square error and bias of the proposed estimator are derived up to the rst order of approximation. The expression for minimum mean square error of proposed estimator is also obtained. The mean square error the proposed estimator is compared with other existing estimators theoretically and condition are obtained under which proposed estimator performed better. A real life population data set has been considered to compare the efciency of the proposed estimator numerically.


Sign in / Sign up

Export Citation Format

Share Document