Energy Counterexamples in Two Weight Calderón–Zygmund Theory

Author(s):  
Eric T Sawyer ◽  
Chun-Yen Shen ◽  
Ignacio Uriarte-Tuero

Abstract We show that the energy conditions are not necessary for boundedness of Riesz transforms in dimension $n\geq 2$. In dimension $n=1$, we construct an elliptic singular integral operator $H_{\flat } $ for which the energy conditions are not necessary for boundedness of $H_{\flat }$. The convolution kernel $K_{\flat }\left ( x\right ) $ of the operator $H_{\flat }$ is a smooth flattened version of the Hilbert transform kernel $K\left ( x\right ) =\frac{1}{x}$ that satisfies ellipticity $ \vert K_{\flat }\left ( x\right ) \vert \gtrsim \frac{1}{\left \vert x\right \vert }$, but not gradient ellipticity $ \vert K_{\flat }^{\prime }\left ( x\right ) \vert \gtrsim \frac{1}{ \vert x \vert ^{2}}$. Indeed the kernel has flat spots where $K_{\flat }^{\prime }\left ( x\right ) =0$ on a family of intervals, but $K_{\flat }^{\prime }\left ( x\right ) $ is otherwise negative on $\mathbb{R}\setminus \left \{ 0\right \} $. On the other hand, if a one-dimensional kernel $K\left ( x,y\right ) $ is both elliptic and gradient elliptic, then the energy conditions are necessary, and so by our theorem in [30], the $T1$ theorem holds for such kernels on the line. This paper includes results from arXiv:16079.06071v3 and arXiv:1801.03706v2.

2015 ◽  
Vol 31 (1) ◽  
pp. 89-95
Author(s):  
SANDA MICULA ◽  

In this paper we examine a relationship between the spline collocation projection operator πn and the Hilbert singular integral operator H0. We use Fourier analysis to prove that under certain conditions, a commutator property holds between the two operators. More specifically, we show that for u ∈ Ht, ||(πnH0 − H0πn)u||t ≤ Chλ||u||s (where h = 1/n), for some t, s and λ ∈ R.


2020 ◽  
Vol 12 (2) ◽  
pp. 443-450
Author(s):  
A. Maatoug ◽  
S.E. Allaoui

The Hilbert transform along curves is of a great importance in harmonic analysis. It is known that its boundedness on $L^p(\mathbb{R}^n)$ has been extensively studied by various authors in different contexts and the authors gave positive results for some or all $p,1<p<\infty$. Littlewood-Paley theory provides alternate methods for studying singular integrals. The Hilbert transform along curves, the classical example of a singular integral operator, led to the extensive modern theory of Calderón-Zygmund operators, mostly studied on the Lebesgue $L^p$ spaces. In this paper, we will use the Littlewood-Paley theory to prove that the boundedness of the Hilbert transform along curve $\Gamma$ on Besov spaces $ B^{s}_{p,q}(\mathbb{R}^n)$ can be obtained by its $L^p$-boundedness, where $ s\in \mathbb{R}, p,q \in ]1,+\infty[ $, and $\Gamma(t)$ is an appropriate curve in $\mathbb{R}^n$, also, it is known that the Besov spaces $ B^{s}_{p,q}(\mathbb{R}^n)$ are embedded into $L^p(\mathbb{R}^n)$ spaces for $s >0$ (i.e. $B^{s}_{p,q}(\mathbb{R}^n) \hookrightarrow L^p(\mathbb{R}^n), s>0)$. Thus, our result may be viewed as an extension of known results to the Besov spaces $ B^{s}_{p,q}(\mathbb{R}^n)$ for general values of $s$ in $\mathbb{R}$.


1988 ◽  
Vol 43 (3) ◽  
pp. 199-200
Author(s):  
K Kh Boimatov ◽  
G Dzhangibekov

2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Wei Wang ◽  
Jingshi Xu

We give sufficient conditions for subsets to be precompact sets in variable Morrey spaces. Then we obtain the boundedness of the commutator generated by a singular integral operator and a BMO function on the variable Morrey spaces. Finally, we discuss the compactness of the commutator generated by a singular integral operator and a BMO function on the variable Morrey spaces.


Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1036
Author(s):  
Paolo De Gregorio

We review two well-known definitions present in the literature, which are used to define the heat or energy flux in one dimensional chains. One definition equates the energy variation per particle to a discretized flux difference, which we here show it also corresponds to the flux of energy in the zero wavenumber limit in Fourier space, concurrently providing a general formula valid for all wavelengths. The other relies somewhat elaborately on a definition of the flux, which is a function of every coordinate in the line. We try to shed further light on their significance by introducing a novel integral operator, acting over movable boundaries represented by the neighboring particles’ positions, or some combinations thereof. By specializing to the case of chains with the particles’ order conserved, we show that the first definition corresponds to applying the differential continuity-equation operator after the application of the integral operator. Conversely, the second definition corresponds to applying the introduced integral operator to the energy flux. It is, therefore, an integral quantity and not a local quantity. More worryingly, it does not satisfy in any obvious way an equation of continuity. We show that in stationary states, the first definition is resilient to several formally legitimate modifications of the (models of) energy density distribution, while the second is not. On the other hand, it seems peculiar that this integral definition appears to capture a transport contribution, which may be called of convective nature, which is altogether missed by the former definition. In an attempt to connect the dots, we propose that the locally integrated flux divided by the inter-particle distance is a good measure of the energy flux. We show that the proposition can be explicitly constructed analytically by an ad hoc modification of the chosen model for the energy density.


Sign in / Sign up

Export Citation Format

Share Document