t1 theorem
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 0)

2020 ◽  
Vol 142 (2) ◽  
pp. 453-520
Author(s):  
Eric T. Sawyer ◽  
Chun-Yen Shen ◽  
Ignacio Uriarte-Tuero
Keyword(s):  

Author(s):  
Eric T Sawyer ◽  
Chun-Yen Shen ◽  
Ignacio Uriarte-Tuero

Abstract We show that the energy conditions are not necessary for boundedness of Riesz transforms in dimension $n\geq 2$. In dimension $n=1$, we construct an elliptic singular integral operator $H_{\flat } $ for which the energy conditions are not necessary for boundedness of $H_{\flat }$. The convolution kernel $K_{\flat }\left ( x\right ) $ of the operator $H_{\flat }$ is a smooth flattened version of the Hilbert transform kernel $K\left ( x\right ) =\frac{1}{x}$ that satisfies ellipticity $ \vert K_{\flat }\left ( x\right ) \vert \gtrsim \frac{1}{\left \vert x\right \vert }$, but not gradient ellipticity $ \vert K_{\flat }^{\prime }\left ( x\right ) \vert \gtrsim \frac{1}{ \vert x \vert ^{2}}$. Indeed the kernel has flat spots where $K_{\flat }^{\prime }\left ( x\right ) =0$ on a family of intervals, but $K_{\flat }^{\prime }\left ( x\right ) $ is otherwise negative on $\mathbb{R}\setminus \left \{ 0\right \} $. On the other hand, if a one-dimensional kernel $K\left ( x,y\right ) $ is both elliptic and gradient elliptic, then the energy conditions are necessary, and so by our theorem in [30], the $T1$ theorem holds for such kernels on the line. This paper includes results from arXiv:16079.06071v3 and arXiv:1801.03706v2.


2018 ◽  
Vol 3 (3) ◽  
pp. 522-537
Author(s):  
Fanghui Liao ◽  
Zongguang Liu ◽  
Hongbin Wang
Keyword(s):  

2016 ◽  
Vol 60 (2) ◽  
pp. 391-412
Author(s):  
Fanghui Liao ◽  
Yanchang Han ◽  
Zongguang Liu
Keyword(s):  

2014 ◽  
Vol 261 ◽  
pp. 220-273 ◽  
Author(s):  
Tuomas Hytönen ◽  
Henri Martikainen

Sign in / Sign up

Export Citation Format

Share Document