galerkin boundary element method
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 6)

H-INDEX

17
(FIVE YEARS 0)

Author(s):  
Gerhard Unger

AbstractIn this paper a convergence analysis of a Galerkin boundary element method for resonance problems arising from the time harmonic Maxwell’s equations is presented. The cavity resonance problem with perfect conducting boundary conditions and the scattering resonance problem for impenetrable and penetrable scatterers are treated. The considered boundary integral formulations of the resonance problems are eigenvalue problems for holomorphic Fredholm operator-valued functions, where the occurring operators satisfy a so-called generalized Gårding’s inequality. The convergence of a conforming Galerkin approximation of this kind of eigenvalue problems is in general only guaranteed if the approximation spaces fulfill special requirements. We use recent abstract results for the convergence of the Galerkin approximation of this kind of eigenvalue problems in order to show that two classical boundary element spaces for Maxwell’s equations, the Raviart–Thomas and the Brezzi–Douglas–Marini boundary element spaces, satisfy these requirements. Numerical examples are presented, which confirm the theoretical results.


2020 ◽  
Vol 36 (6) ◽  
pp. 749-761
Author(s):  
Y. -Y. Ko

ABSTRACTWhen the Symmetric Galerkin boundary element method (SGBEM) based on full-space elastostatic fundamental solutions is used to solve Neumann problems, the displacement solution cannot be uniquely determined because of the inevitable rigid-body-motion terms involved. Several methods that have been used to remove the non-uniqueness, including additional point support, eigen decomposition, regularization of a singular system and modified boundary integral equations, were introduced to amend SGBEM, and were verified to eliminate the rigid body motions in the solutions of full-space exterior Neumann problems. Because half-space problems are common in geotechnical engineering practice and they are usually Neumann problems, typical half-space problems were also analyzed using the amended SGBEM with a truncated free surface mesh. However, various levels of errors showed for all the methods of removing non-uniqueness investigated. Among them, the modified boundary integral equations based on the Fredholm’s theory is relatively preferable for its accurate results inside and near the loaded area, especially where the deformation varies significantly.


2017 ◽  
Vol 39 (2) ◽  
pp. 135-147 ◽  
Author(s):  
Han Duc Tran ◽  
Binh Huy Nguyen

The isogeometric symmetric Galerkin boundary element method is applied for the analysis of crack problems in two-dimensional magneto-electro-elastic domains. In this method, the field variables of the governing integral equations as well as the geometry of the problems are approximated using non-uniform rational B-splines (NURBS) basis functions. The key advantage of this method is that the isogeometric analysis and boundary element method deal only with the boundary of the domain. To verify the accuracy of the proposed method, numerical examples for crack problems in infinite and finite domains are examined. It is observed that the computed generalized stress intensity factors obtained by the proposed method agree well with the exact solutions and other references.


Sign in / Sign up

Export Citation Format

Share Document