chosen ciphertext security
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 6)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 11 (8) ◽  
pp. 3367
Author(s):  
Youngkyung Lee ◽  
Dong Hoon Lee ◽  
Jong Hwan Park

Non-interactive zero-knowledge (NIZK) proofs for chosen-ciphertext security are generally considered to give an impractical construction. An interesting recent work by Seo, Abdalla, Lee, and Park (Information Sciences, July 2019) proposed an efficient semi-generic conversion method for achieving chosen-ciphertext security based on NIZK proofs in the random oracle model. The recent work by Seo et al. demonstrated that the semi-generic conversion method transforms a one-way (OW)-secure key encapsulation mechanism (KEM) into a chosen-ciphertext secure KEM while preserving tight security reduction. This paper shows that the security analysis of the semi-generic conversion method has a flaw, which comes from the OW security condition of the underlying KEM. Without changing the conversion method, this paper presents a revised security proof under the changed conditions that (1) the underlying KEM must be chosen-plaintext secure in terms of indistinguishability and (2) an NIZK proof derived from the underlying KEM via the Fiat–Shamir transform must have the properties of zero-knowledge and simulation soundness. This work extended the security proof strategy to the case of identity-based KEM (IBKEM) and also revise the security proof for IBKEM of previous method by Seo et al. Finally, this work gives a corrected security proof by applying the new proofs to several existing (IB)KEMs.


2020 ◽  
Author(s):  
Cong Li ◽  
Qingni Shen ◽  
Zhikang Xie ◽  
Xinyu Feng ◽  
Yuejian Fang ◽  
...  

Abstract Attribute-based encryption with equality test (ABEET) simultaneously supports fine-grained access control on the encrypted data and plaintext message equality comparison without decrypting the ciphertexts. Recently, there have been several literatures about ABEET proposed. Nevertheless, most of them explore the ABEET schemes in the random oracle model, which has been pointed out to have many defects in practicality. The only existing ABEET scheme in the standard model, proposed by Wang et al., merely achieves the indistinguishable against chosen-plaintext attack security. Considering the aforementioned problems, in this paper, we propose the first direct adaptive chosen-ciphertext security ciphertext-policy ABEET scheme in the standard model. Our method only adopts a chameleon hash function and adds one dummy attribute to the access structure. Compared with the previous works, our scheme achieves the security improvement, ciphertext validity check and large universe. Besides, we further optimize our scheme to support the outsourced decryption. Finally, we first give the detailed theoretical analysis of our constructions in computation and storage costs, then we implement our constructions and carry out a series of experiments. Both results indicate that our constructions are more efficient in Setup and Trapdoor and have the shorter public parameters than the existing ABEET ones do.


2019 ◽  
Vol 490 ◽  
pp. 18-35
Author(s):  
Minhye Seo ◽  
Michel Abdalla ◽  
Dong Hoon Lee ◽  
Jong Hwan Park

Author(s):  
Honglong DAI ◽  
Jinying CHANG ◽  
Zhenduo HOU ◽  
Maozhi XU

Sign in / Sign up

Export Citation Format

Share Document