abstract algebraic logic
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 0)

2019 ◽  
Vol 12 (2) ◽  
pp. 331-371
Author(s):  
PETR CINTULA ◽  
JOSÉ GIL-FÉREZ ◽  
TOMMASO MORASCHINI ◽  
FRANCESCO PAOLI

AbstractWe generalise the Blok–Jónsson account of structural consequence relations, later developed by Galatos, Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and Jónsson admit, in place of sheer formulas, a wider range of syntactic units to be manipulated in deductions (including sequents or equations), these objects are invariably aggregated via set-theoretical union. Our approach is more general in that nonidempotent forms of premiss and conclusion aggregation, including multiset sum and fuzzy set union, are considered. In their abstract form, thus, deductive relations are defined as additional compatible preorderings over certain partially ordered monoids. We investigate these relations using categorical methods and provide analogues of the main results obtained in the general theory of consequence relations. Then we focus on the driving example of multiset deductive relations, providing variations of the methods of matrix semantics and Hilbert systems in Abstract Algebraic Logic.


2018 ◽  
Vol 28 (5) ◽  
pp. 1021-1059 ◽  
Author(s):  
Marcelo E Coniglio ◽  
Aldo Figallo-Orellano ◽  
Ana Claudia Golzio

Abstract Multialgebras (or hyperalgebras or non-deterministic algebras) have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency (or LFIs) that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic algebraization of logics by swap structures are given. Specifically, a formal study of swap structures for LFIs is developed, by adapting concepts of universal algebra to multialgebras in a suitable way. A decomposition theorem similar to Birkhoff’s representation theorem is obtained for each class of swap structures. Moreover, when applied to the 3-valued algebraizable logics J3 and Ciore, their classes of algebraic models are retrieved, and the swap structures semantics become twist structures semantics (as independently introduced by M. Fidel and D. Vakarelov). This fact, together with the existence of a functor from the category of Boolean algebras to the category of swap structures for each LFI (which is closely connected with Kalman’s functor), suggests that swap structures can be seen as non-deterministic twist structures. This opens new avenues for dealing with non-algebraizable logics by the more general methodology of multialgebraic semantics.


2018 ◽  
Vol 47 (2) ◽  
Author(s):  
George Voutsadakis

This work adapts techniques and results first developed by Malinowski and by Marek in the context of referential semantics of sentential logics to the context of logics formalized as π-institutions. More precisely, the notion of a pseudoreferential matrix system is introduced and it is shown how this construct generalizes that of a referential matrix system. It is then shown that every π–institution has a pseudo-referential matrix system semantics. This contrasts with referential matrix system semantics which is only available for self-extensional π-institutions by a previous result of the author obtained as an extension of a classical result of Wójcicki. Finally, it is shown that it is possible to replace an arbitrary pseudoreferential matrix system semantics by a discrete pseudo-referential matrix system semantics.


2018 ◽  
Vol 11 (4) ◽  
pp. 780-804 ◽  
Author(s):  
TOMMASO MORASCHINI

AbstractAbstract algebraic logic is a theory that provides general tools for the algebraic study of arbitrary propositional logics. According to this theory, every logic ${\cal L}$ is associated with a matrix semantics $Mo{d^{\rm{*}}}{\cal L}$. This article is a contribution to the systematic study of the so-called truth sets of the matrices in $Mo{d^{\rm{*}}}{\cal L}$. In particular, we show that the fact that the truth sets of $Mo{d^{\rm{*}}}{\cal L}$ can be defined by means of equations with universally quantified parameters is captured by an order-theoretic property of the Leibniz operator restricted to deductive filters of ${\cal L}$. This result was previously known for equational definability without parameters. Similarly, it was known that the truth sets of $Mo{d^{\rm{*}}}{\cal L}$ are implicitly definable if and only if the Leibniz operator is injective on deductive filters of ${\cal L}$ over every algebra. However, it was an open problem whether the injectivity of the Leibniz operator transfers from the theories of ${\cal L}$ to its deductive filters over arbitrary algebras. We show that this is the case for logics expressed in a countable language, and that it need not be true in general. Finally we consider an intermediate condition on the truth sets in $Mo{d^{\rm{*}}}{\cal L}$ that corresponds to the order-reflection of the Leibniz operator.


Sign in / Sign up

Export Citation Format

Share Document