scholarly journals AN ABSTRACT APPROACH TO CONSEQUENCE RELATIONS

2019 ◽  
Vol 12 (2) ◽  
pp. 331-371
Author(s):  
PETR CINTULA ◽  
JOSÉ GIL-FÉREZ ◽  
TOMMASO MORASCHINI ◽  
FRANCESCO PAOLI

AbstractWe generalise the Blok–Jónsson account of structural consequence relations, later developed by Galatos, Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and Jónsson admit, in place of sheer formulas, a wider range of syntactic units to be manipulated in deductions (including sequents or equations), these objects are invariably aggregated via set-theoretical union. Our approach is more general in that nonidempotent forms of premiss and conclusion aggregation, including multiset sum and fuzzy set union, are considered. In their abstract form, thus, deductive relations are defined as additional compatible preorderings over certain partially ordered monoids. We investigate these relations using categorical methods and provide analogues of the main results obtained in the general theory of consequence relations. Then we focus on the driving example of multiset deductive relations, providing variations of the methods of matrix semantics and Hilbert systems in Abstract Algebraic Logic.

2000 ◽  
Vol 65 (2) ◽  
pp. 481-518 ◽  
Author(s):  
Josep Maria Font ◽  
Miquel Rius

AbstractThis paper contains a joint study of two sentential logics that combine a many-valued character, namely tetravalence, with a modal character; one of them is normal and the other one quasinormal. The method is to study their algebraic counterparts and their abstract models with the tools of Abstract Algebraic Logic, and particularly with those of Brown and Suszko's theory of abstract logics as recently developed by Font and Jansana in their “A General Algebraic Semantics for Sentential Logics”. The logics studied here arise from the algebraic and lattice-theoretical properties we review of Tetravalent Modal Algebras, a class of algebras studied mainly by Loureiro, and also by Figallo. Landini and Ziliani, at the suggestion of the late Antonio Monteiro.


Author(s):  
George Voutsadakis

The theory of equivalential deductive systems, as introduced by Prucnal and Wrónski and further developed by Czelakowski, is abstracted to cover the case of logical systems formalized as π-institutions. More precisely, the notion of an N-equivalence system for a given π-institution is introduced. A characterization theorem for N-equivalence systems, previously proven for N-parameterized equivalence systems, is revisited and a “transfer theorem” for N-equivalence systems is proven. For a π-institution I having an N-equivalence system, the maximum such system is singled out and, then, an analog of Herrmann’s Test, characterizing those N-protoalgebraic π-institutions having an N-equivalence system, is formulated. Finally, some of the rudiments of matrix theory are revisited in the context of π-institutions, as they relate to the existence of N-equivalence systems.


2016 ◽  
Vol 81 (2) ◽  
pp. 417-462 ◽  
Author(s):  
HUGO ALBUQUERQUE ◽  
JOSEP MARIA FONT ◽  
RAMON JANSANA

AbstractThis paper presents a unified framework that explains and extends the already successful applications of the Leibniz operator, the Suszko operator, and the Tarski operator in recent developments in abstract algebraic logic. To this end, we refine Czelakowski’s notion of an S-compatibility operator, and introduce the notion of coherent family of S-compatibility operators, for a sentential logic S. The notion of coherence is a restricted property of commutativity with inverse images by surjective homomorphisms, which is satisfied by both the Leibniz and the Suszko operators. We generalize several constructions and results already existing for the mentioned operators; in particular, the well-known classes of algebras associated with a logic through each of them, and the notions of full generalized model of a logic and a special kind of S-filters (which generalizes the less-known notion of Leibniz filter). We obtain a General Correspondence Theorem, extending the well-known one from the theory of protoalgebraic logics to arbitrary logics and to more general operators, and strengthening its formulation. We apply the general results to the Leibniz and the Suszko operators, and obtain several characterizations of the main classes of logics in the Leibniz hierarchy by the form of their full generalized models, by old and new properties of the Leibniz operator, and by the behaviour of the Suszko operator. Some of these characterizations complete or extend known ones, for some classes in the hierarchy, thus offering an integrated approach to the Leibniz hierarchy that uncovers some new, nice symmetries.


Sign in / Sign up

Export Citation Format

Share Document