formal deformation
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Marvin Dippell ◽  
Chiara Esposito ◽  
Stefan Waldmann

AbstractCoisotropic algebras consist of triples of algebras for which a reduction can be defined and unify in a very algebraic fashion coisotropic reduction in several settings. In this paper, we study the theory of (formal) deformation of coisotropic algebras showing that deformations are governed by suitable coisotropic DGLAs. We define a deformation functor and prove that it commutes with reduction. Finally, we study the obstructions to existence and uniqueness of coisotropic algebras and present some geometric examples.


2021 ◽  
pp. 2150035
Author(s):  
Philipp Schmitt ◽  
Matthias Schötz

We study formal and non-formal deformation quantizations of a family of manifolds that can be obtained by phase space reduction from [Formula: see text] with the Wick star product in arbitrary signature. Two special cases of such manifolds are the complex projective space [Formula: see text] and the complex hyperbolic disc [Formula: see text]. We generalize several older results to this setting: The construction of formal star products and their explicit description by bidifferential operators, the existence of a convergent subalgebra of “polynomial” functions, and its completion to an algebra of certain analytic functions that allow an easy characterization via their holomorphic extensions. Moreover, we find an isomorphism between the non-formal deformation quantizations for different signatures, linking, e.g., the star products on [Formula: see text] and [Formula: see text]. More precisely, we describe an isomorphism between the (polynomial or analytic) function algebras that is compatible with Poisson brackets and the convergent star products. This isomorphism is essentially given by Wick rotation, i.e. holomorphic extension of analytic functions and restriction to a new domain. It is not compatible with the [Formula: see text]-involution of pointwise complex conjugation.


2020 ◽  
Vol 32 (10) ◽  
pp. 2050030 ◽  
Author(s):  
Fabián Belmonte

We develop a quantization method, that we name decomposable Weyl quantization, which ensures that the constants of motion of a prescribed finite set of Hamiltonians are preserved by the quantization. Our method is based on a structural analogy between the notions of reduction of the classical phase space and diagonalization of selfadjoint operators. We obtain the spectral decomposition of the emerging quantum constants of motion directly from the quantization process. If a specific quantization is given, we expect that it preserves constants of motion exactly when it coincides with decomposable Weyl quantization on the algebra of constants of motion. We obtain a characterization of when such property holds in terms of the Wigner transforms involved. We also explain how our construction can be applied to spectral theory. Moreover, we discuss how our method opens up new perspectives in formal deformation quantization and geometric quantization.


This chapter discusses Peter Scholze's minicourse on local Shimura varieties. The goal of these lectures is to describe a program to construct local Langlands correspondence. The construction is based on cohomology of so-called local Shimura varieties and generalizations thereof. It was predicted by Robert Kottwitz that for each local Shimura datum, there exists a so-called local Shimura variety, which is a pro-object in the category of rigid analytic spaces. Thus, local Shimura varieties are determined by a purely group-theoretic datum without any underlying deformation problem. This is now an unpublished theorem, by the work of Fargues, Kedlaya–Liu, and Caraiani–Scholze. The chapter then explains the approach to local Langlands correspondence via cohomology of Lubin–Tate spaces as well as Rapoport–Zink spaces. It also introduces a formal deformation problem and describes properties of the corresponding universal deformation formal scheme.


Author(s):  
Alexander Gorokhovsky ◽  
Niek de Kleijn ◽  
Ryszard Nest

We prove a $\unicode[STIX]{x1D6E4}$ -equivariant version of the algebraic index theorem, where $\unicode[STIX]{x1D6E4}$ is a discrete group of automorphisms of a formal deformation of a symplectic manifold. The particular cases of this result are the algebraic version of the transversal index theorem related to the theorem of A. Connes and H. Moscovici for hypo-elliptic operators and the index theorem for the extension of the algebra of pseudodifferential operators by a group of diffeomorphisms of the underlying manifold due to A. Savin, B. Sternin, E. Schrohe and D. Perrot.


2018 ◽  
Vol 154 (10) ◽  
pp. 2055-2089 ◽  
Author(s):  
Anthony Blanc ◽  
Ludmil Katzarkov ◽  
Pranav Pandit

In this paper we use the theory of formal moduli problems developed by Lurie in order to study the space of formal deformations of a$k$-linear$\infty$-category for a field$k$. Our main result states that if${\mathcal{C}}$is a$k$-linear$\infty$-category which has a compact generator whose groups of self-extensions vanish for sufficiently high positive degrees, then every formal deformation of${\mathcal{C}}$has zero curvature and moreover admits a compact generator.


2018 ◽  
Vol 11 (04) ◽  
pp. 1850057
Author(s):  
Hafedh Khalfoun ◽  
Nizar Ben Fraj ◽  
Meher Abdaoui

We investigate the first differential cohomology space associated with the embedding of the affine Lie superalgebra [Formula: see text] on the [Formula: see text]-dimensional supercircle [Formula: see text] in the Lie superalgebra [Formula: see text] of superpseudodifferential operators with smooth coefficients, where [Formula: see text]. Following Ovsienko and Roger, we give explicit expressions of the basis cocycles. We study the deformations of the structure of the [Formula: see text]-module [Formula: see text]. We prove that any formal deformation is equivalent to its infinitesimal part.


2018 ◽  
Vol 15 (05) ◽  
pp. 1850072
Author(s):  
Khaled Basdouri ◽  
Salem Omri

We consider the [Formula: see text]-module structure on the spaces of differential operators acting on the spaces of weighted densities. We compute the second differential cohomology of the Lie superalgebra [Formula: see text] with coefficients in differential operators acting on the spaces of weighted densities. We classify formal deformations of the [Formula: see text]-module structure on the superspaces of symbols of differential operators. We prove that any formal deformation of a given infinitesimal deformation of this structure is equivalent to its infinitesimal part. This work is the simplest superization of a result by Basdouri [Deformation of [Formula: see text]-modules of pseudo-differential operators and symbols, J. Pseudo-differ. Oper. Appl. 7(2) (2016) 157–179] and application of work by Basdouri et al. [First cohomology of [Formula: see text] and [Formula: see text] acting on linear differential operators, Int. J. Geom. Methods Mod. Phys. 13(1) (2016)].


Sign in / Sign up

Export Citation Format

Share Document