scholarly journals Thermodynamics of smooth models of pseudo–Anosov homeomorphisms

2021 ◽  
pp. 1-43
Author(s):  
DOMINIC VECONI

Abstract We develop a thermodynamic formalism for a smooth realization of pseudo-Anosov surface homeomorphisms. In this realization, the singularities of the pseudo-Anosov map are assumed to be fixed, and the trajectories are slowed down so the differential is the identity at these points. Using Young towers, we prove existence and uniqueness of equilibrium states for geometric t-potentials. This family of equilibrium states includes a unique SRB measure and a measure of maximal entropy, the latter of which has exponential decay of correlations and the central limit theorem.

2016 ◽  
Vol 37 (4) ◽  
pp. 1060-1101 ◽  
Author(s):  
ARMANDO CASTRO ◽  
TEÓFILO NASCIMENTO

We show the existence and uniqueness of the maximal entropy probability measure for partially hyperbolic diffeomorphisms which are semiconjugate to non-uniformly expanding maps. Using the theory of projective metrics on cones, we then prove exponential decay of correlations for Hölder continuous observables and the central limit theorem for the maximal entropy probability measure. Moreover, for systems derived from a solenoid, we also prove the statistical stability for the maximal entropy probability measure. Finally, we use such techniques to obtain similar results in a context containing partially hyperbolic systems derived from Anosov.


2017 ◽  
Vol 39 (3) ◽  
pp. 764-794 ◽  
Author(s):  
Y. PESIN ◽  
S. SENTI ◽  
K. ZHANG

We effect the thermodynamical formalism for the non-uniformly hyperbolic $C^{\infty }$ map of the two-dimensional torus known as the Katok map [Katok. Bernoulli diffeomorphisms on surfaces. Ann. of Math. (2)110(3) 1979, 529–547]. It is a slow-down of a linear Anosov map near the origin and it is a local (but not small) perturbation. We prove the existence of equilibrium measures for any continuous potential function and obtain uniqueness of equilibrium measures associated to the geometric $t$-potential $\unicode[STIX]{x1D711}_{t}=-t\log \mid df|_{E^{u}(x)}|$ for any $t\in (t_{0},\infty )$, $t\neq 1$, where $E^{u}(x)$ denotes the unstable direction. We show that $t_{0}$ tends to $-\infty$ as the domain of the perturbation shrinks to zero. Finally, we establish exponential decay of correlations as well as the central limit theorem for the equilibrium measures associated to $\unicode[STIX]{x1D711}_{t}$ for all values of $t\in (t_{0},1)$.


2018 ◽  
Vol 39 (9) ◽  
pp. 2433-2455 ◽  
Author(s):  
VAUGHN CLIMENHAGA ◽  
TODD FISHER ◽  
DANIEL J. THOMPSON

We study thermodynamic formalism for the family of robustly transitive diffeomorphisms introduced by Mañé, establishing existence and uniqueness of equilibrium states for natural classes of potential functions. In particular, we characterize the Sinaĭ–Ruelle–Bowen measures for these diffeomorphisms as unique equilibrium states for a suitable geometric potential. We also obtain large deviations and multifractal results for the unique equilibrium states produced by the main theorem.


2009 ◽  
Vol 30 (3) ◽  
pp. 687-728 ◽  
Author(s):  
HENK BRUIN ◽  
MARK DEMERS ◽  
IAN MELBOURNE

AbstractWe study two classes of dynamical systems with holes: expanding maps of the interval and Collet–Eckmann maps with singularities. In both cases, we prove that there is a natural absolutely continuous conditionally invariant measure μ (a.c.c.i.m.) with the physical property that strictly positive Hölder continuous functions converge to the density of μ under the renormalized dynamics of the system. In addition, we construct an invariant measure ν, supported on the Cantor set of points that never escape from the system, that is ergodic and enjoys exponential decay of correlations for Hölder observables. We show that ν satisfies an equilibrium principle which implies that the escape rate formula, familiar to the thermodynamic formalism, holds outside the usual setting. In particular, it holds for Collet–Eckmann maps with holes, which are not uniformly hyperbolic and do not admit a finite Markov partition. We use a general framework of Young towers with holes and first prove results about the a.c.c.i.m. and the invariant measure on the tower. Then we show how to transfer results to the original dynamical system. This approach can be expected to generalize to other dynamical systems than the two above classes.


2001 ◽  
Vol 21 (2) ◽  
pp. 511-532 ◽  
Author(s):  
OLIVER JENKINSON

For a continuous circle map T, define the barycentre of any T-invariant probability measure \mu to be b(\mu)=\int_{S^1} z\, d\mu(z). The set \Omega of all such barycentres is a compact convex subset of \mathbb{C}. If T is conjugate to a rational rotation via a Möbius map, we prove \Omega is a disc. For every piecewise-onto expanding map we prove that the barycentre set has non-empty interior. In this case, each interior point is the barycentre of many invariant measures, but we prove that amongst these there is a unique one which maximizes entropy, and that this measure belongs to a distinguished two-parameter family of equilibrium states. This family induces a real-analytic radial foliation of int(\Omega), centred around the barycentre of the global measure of maximal entropy, where each ray is the barycentre locus of some one-parameter section of the family. We explicitly compute these rays for two examples. While developing this framework we also answer a conjecture of Z. Coelho [6] regarding limits of sequences of equilibrium states.


2010 ◽  
Vol 31 (2) ◽  
pp. 423-447 ◽  
Author(s):  
RENAUD LEPLAIDEUR

AbstractIn this article we prove the existence and uniqueness of equilibrium states for the potential $\phi _{t}= -t\logju \ (t\in \R )$ and the class of non-uniformly hyperbolic horseshoes which was introduced in Rios [Unfolding homoclinic tangencies inside horseshoes: hyperbolicity, fractal dimensions and persistent tangencies. Nonlinearity14 (2001), 431–462]. We show that the pressure t↦𝒫(t) for −tlog Ju is real-analytic on $\R $. We give the exact equations of the two asymptotes to the graph of 𝒫(t) at ±∞ and we prove that these non-uniformly hyperbolic horseshoes do not have measures which minimize the unstable Lyapunov exponent.


2021 ◽  
Vol 183 (2) ◽  
Author(s):  
Henk Bruin

AbstractWe show that certain billiard flows on planar billiard tables with horns can be modeled as suspension flows over Young towers (Ann. Math. 147:585–650, 1998) with exponential tails. This implies exponential decay of correlations for the billiard map. Because the height function of the suspension flow itself is polynomial when the horns are Torricelli-like trumpets, one can derive Limit Laws for the billiard flow, including Stable Limits if the parameter of the Torricelli trumpet is chosen in (1, 2).


2010 ◽  
Vol 22 (10) ◽  
pp. 1147-1179 ◽  
Author(s):  
LUIS BARREIRA

This is a survey on recent developments concerning a thermodynamic formalism for almost additive sequences of functions. While the nonadditive thermodynamic formalism applies to much more general sequences, at the present stage of the theory there are no general results concerning, for example, a variational principle for the topological pressure or the existence of equilibrium or Gibbs measures (at least without further restrictive assumptions). On the other hand, in the case of almost additive sequences, it is possible to establish a variational principle and to discuss the existence and uniqueness of equilibrium and Gibbs measures, among several other results. After presenting in a self-contained manner the foundations of the theory, the survey includes the description of three applications of the almost additive thermodynamic formalism: a multifractal analysis of Lyapunov exponents for a class of nonconformal repellers; a conditional variational principle for limits of almost additive sequences; and the study of dimension spectra that consider simultaneously limits into the future and into the past.


2019 ◽  
Vol 40 (11) ◽  
pp. 3030-3050
Author(s):  
MARIA CARVALHO ◽  
SEBASTIÁN A. PÉREZ

We consider skew products on $M\times \mathbb{T}^{2}$, where $M$ is the two-sphere or the two-torus, which are partially hyperbolic and semi-conjugate to an Axiom A diffeomorphism. This class of dynamics includes the open sets of $\unicode[STIX]{x1D6FA}$-non-stable systems introduced by Abraham and Smale [Non-genericity of Ł-stability. Global Analysis (Proceedings of Symposia in Pure Mathematics, XIV (Berkeley 1968)). American Mathematical Society, Providence, RI, 1970, pp. 5–8.] and Shub [Topological Transitive Diffeomorphisms in$T^{4}$ (Lecture Notes in Mathematics, 206). Springer, Berlin, 1971, pp. 39–40]. We present sufficient conditions, both on the skew products and the potentials, for the existence and uniqueness of equilibrium states, and discuss their statistical stability.


Sign in / Sign up

Export Citation Format

Share Document