postmating behavior
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Fernando Diaz ◽  
Carson Allan ◽  
Therese Markow ◽  
Jeremy Bono ◽  
Luciano Matzkin

Abstract Background Despite the growing interest in the female side of copulatory interactions, the roles played by alternative splicing mechanisms of pre-RNA and the epistatic effects of these interactions on tissues outside of the reproductive tract have remained largely unknown. Here we addressed these questions in the context of con- vs heterospecific matings between Drosophila mojavensis and its sister species, D. arizonae. We analyzed transcriptional responses in female heads using an integrated investigation of genome-wide patterns of gene expression, including differential expression (DE), alternative splicing (AS) and intron retention (IR). Results Our results indicated that early transcriptional responses were largely congruent between con- and heterospecific matings but are substantially perturbed over time. Conspecific matings induced functional pathways related to amino acid balance previously associated with the brain’s physiology and female postmating behavior. Heterospecific matings often fail to activate regulation of some of these genes and induce expression of additional genes when compared with those of conspecifically-mated females. These results are consistent for all transcriptional mechanisms with some distinctions: DE genes were mostly linked to pathways of proteolysis and nutrient homeostasis, while AS genes are more related to photoreception and muscle assembly pathways. Conclusions IR seem to be an important mechanism of DE regulation during the female postmating response. While AS genes evolve at slower evolutionary rates than the genome background, DE genes evolve at much higher rates, similar or even higher than those of seminal fluid proteins, which unveil their potential role for reproductive barriers and the extent of sexual conflict.



2020 ◽  
Vol 31 (6) ◽  
pp. 1344-1352 ◽  
Author(s):  
Joe A Moschilla ◽  
Joseph L Tomkins ◽  
Leigh W Simmons

Abstract In response to the reduction in fitness associated with sperm competition, males are expected to evolve tactics that hinder female remating. For example, females often display a postmating reduction in their sexual receptivity that has been shown to be mediated by proteins contained in a male’s seminal fluid (sfps). However, although there has been comprehensive research on sfps in genetically well-characterized species, few nonmodel species have been studied in such detail. We initially confirm that female Australian field crickets, Teleogryllus oceanicus, do display a significant reduction in their mate-searching behavior 24 h after mating. This effect was still apparent 3 days after mating but was entirely absent after 1 week. We then attempted to identify the sfps that might play a role in inducing this behavioral response. We identified two proteins, ToSfp022 and ToSfp011, that were associated with the alteration in female postmating behavior. The knockdown of both proteins resulted in mated females that displayed a significant increase in their mate-searching behaviors compared with females mated to males having the full compliment of seminal fluid proteins in their ejaculate. Our results indicate that the female refractory period in T. oceanicus likely reflects a sperm competition avoidance tactic by males, achieved through the action of male seminal fluid proteins.



2009 ◽  
Vol 38 (4) ◽  
pp. 1219-1225 ◽  
Author(s):  
D. L. Frank ◽  
T. C. Leskey ◽  
J. C. Bergh


2005 ◽  
Vol 15 (3) ◽  
pp. 207-213 ◽  
Author(s):  
Jing Peng ◽  
Shanjun Chen ◽  
Susann Büsser ◽  
Huanfa Liu ◽  
Thomas Honegger ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document