eulerian posets
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

10.37236/7910 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Saúl A. Blanco

In this paper we introduce a way of partitioning the paths of shortest lengths in the Bruhat graph $B(u,v)$ of a Bruhat interval $[u,v]$ into rank posets $P_{i}$ in a way that each $P_{i}$ has a unique maximal chain that is rising under a reflection order. In the case where each $P_{i}$ has rank three, the construction yields a combinatorial description of some terms of the complete $\textbf{cd}$-index as a sum of ordinary $\textbf{cd}$-indices of Eulerian posets obtained from each of the $P_{i}$.


2012 ◽  
Vol 29 (4) ◽  
pp. 857-882
Author(s):  
Richard Ehrenborg ◽  
Gábor Hetyei ◽  
Margaret Readdy
Keyword(s):  

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Hoda Bidkhori

International audience In this paper we study finite Eulerian posets which are binomial or Sheffer. These important classes of posets are related to the theory of generating functions and to geometry. The results of this paper are organized as follows: (1) We completely determine the structure of Eulerian binomial posets and, as a conclusion, we are able to classify factorial functions of Eulerian binomial posets; (2) We give an almost complete classification of factorial functions of Eulerian Sheffer posets by dividing the original question into several cases; (3) In most cases above, we completely determine the structure of Eulerian Sheffer posets, a result stronger than just classifying factorial functions of these Eulerian Sheffer posets. We also study Eulerian triangular posets. This paper answers questions posed by R. Ehrenborg and M. Readdy. This research is also motivated by the work of R. Stanley about recognizing the \emphboolean lattice by looking at smaller intervals. Nous étudions les ensembles partiellement ordonnés finis (EPO) qui sont soit binomiaux soit de type Sheffer (deux notions reliées aux séries génératrices et à la géométrie). Nos résultats sont les suivants: (1) nous déterminons la structure des EPO Euleriens et binomiaux; nous classifions ainsi les fonctions factorielles de tous ces EPO; (2) nous donnons une classification presque complète des fonctions factorielles des EPO Euleriens de type Sheffer; (3) dans la plupart de ces cas, nous déterminons complètement la structure des EPO Euleriens et Sheffer, ce qui est plus fort que classifier leurs fonctions factorielles. Nous étudions aussi les EPO Euleriens triangulaires. Cet article répond à des questions de R. Ehrenborg and M. Readdy. Il est aussi motivé par le travail de R. Stanley sur la reconnaissance du treillis booléen via l'étude des petits intervalles.


10.37236/199 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Farzin Barekat ◽  
Stephanie Van Willigenburg

We introduce a new operation on skew diagrams called composition of transpositions, and use it and a Jacobi-Trudi style formula to derive equalities on skew Schur $Q$-functions whose indexing shifted skew diagram is an ordinary skew diagram. When this skew diagram is a ribbon, we conjecture necessary and sufficient conditions for equality of ribbon Schur $Q$-functions. Moreover, we determine all relations between ribbon Schur $Q$-functions; show they supply a ${\Bbb Z}$-basis for skew Schur $Q$-functions; assert their irreducibility; and show that the non-commutative analogue of ribbon Schur $Q$-functions is the flag $h$-vector of Eulerian posets.


10.37236/1861 ◽  
2004 ◽  
Vol 11 (2) ◽  
Author(s):  
Gábor Hetyei

Given a sequence $\{Q_n(x)\}_{n=0}^{\infty}$ of symmetric orthogonal polynomials, defined by a recurrence formula $Q_n(x)=\nu_n\cdot x\cdot Q_{n-1}(x)-(\nu_n-1)\cdot Q_{n-2}(x)$ with integer $\nu_i$'s satisfying $\nu_i\geq 2$, we construct a sequence of nested Eulerian posets whose $ce$-index is a non-commutative generalization of these polynomials. Using spherical shellings and direct calculations of the $cd$-coefficients of the associated Eulerian posets we obtain two new proofs for a bound on the true interval of orthogonality of $\{Q_n(x)\}_{n=0}^{\infty}$. Either argument can replace the use of the theory of chain sequences. Our $cd$-index calculations allow us to represent the orthogonal polynomials as an explicit positive combination of terms of the form $x^{n-2r}(x^2-1)^r$. Both proofs may be extended to the case when the $\nu_i$'s are not integers and the second proof is still valid when only $\nu_i>1$ is required. The construction provides a new "limited testing ground" for Stanley's non-negativity conjecture for Gorenstein$^*$ posets, and suggests the existence of strong links between the theory of orthogonal polynomials and flag-enumeration in Eulerian posets.


Sign in / Sign up

Export Citation Format

Share Document