scholarly journals Orthogonal Polynomials Represented by $CW$-Spheres

10.37236/1861 ◽  
2004 ◽  
Vol 11 (2) ◽  
Author(s):  
Gábor Hetyei

Given a sequence $\{Q_n(x)\}_{n=0}^{\infty}$ of symmetric orthogonal polynomials, defined by a recurrence formula $Q_n(x)=\nu_n\cdot x\cdot Q_{n-1}(x)-(\nu_n-1)\cdot Q_{n-2}(x)$ with integer $\nu_i$'s satisfying $\nu_i\geq 2$, we construct a sequence of nested Eulerian posets whose $ce$-index is a non-commutative generalization of these polynomials. Using spherical shellings and direct calculations of the $cd$-coefficients of the associated Eulerian posets we obtain two new proofs for a bound on the true interval of orthogonality of $\{Q_n(x)\}_{n=0}^{\infty}$. Either argument can replace the use of the theory of chain sequences. Our $cd$-index calculations allow us to represent the orthogonal polynomials as an explicit positive combination of terms of the form $x^{n-2r}(x^2-1)^r$. Both proofs may be extended to the case when the $\nu_i$'s are not integers and the second proof is still valid when only $\nu_i>1$ is required. The construction provides a new "limited testing ground" for Stanley's non-negativity conjecture for Gorenstein$^*$ posets, and suggests the existence of strong links between the theory of orthogonal polynomials and flag-enumeration in Eulerian posets.

1994 ◽  
Vol 49 (3) ◽  
pp. 445-457
Author(s):  
Michael Baake

Abstract The relation between small oscillations of one-dimensional mechanical n-particle systems and the theory of orthogonal polynomials is investigated. It is shown how the polynomials provide a natural tool to determine the eigenfrequencies and eigencoordinates completely, where the existence of a specific two-termed recurrence formula is essential. Physical and mathematical statements are formulated in terms of the recurrence coefficients which can directly be obtained from the corresponding secular equation. Several results on Sturm sequences and orthogonal polynomials are presented with respect to the treatment of small oscillations. The relation to the numerical treatment of the generalized eigenvalue problem is discussed and further applications to physical problems from quantum mechanics, statistical mechanics, and spin systems are briefly outlined.


1970 ◽  
Vol 13 (4) ◽  
pp. 529-532 ◽  
Author(s):  
T. S. Chihara

In his classic memoir on the moment problem that bears his name, Stieltjes [2] exhibited1as an example of an indeterminate (Stieltjes) moment sequence.Stieltjes also obtained the corresponding S-fraction and thus implicitly obtained the three-term recurrence formula satisfied by the corresponding orthogonal polynomials.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1300
Author(s):  
Carlos Hermoso ◽  
Edmundo J. Huertas ◽  
Alberto Lastra ◽  
Anier Soria-Lorente

This contribution deals with the sequence {Un(a)(x;q,j)}n≥0 of monic polynomials in x, orthogonal with respect to a Sobolev-type inner product related to the Al-Salam–Carlitz I orthogonal polynomials, and involving an arbitrary number j of q-derivatives on the two boundaries of the corresponding orthogonality interval, for some fixed real number q∈(0,1). We provide several versions of the corresponding connection formulas, ladder operators, and several versions of the second order q-difference equations satisfied by polynomials in this sequence. As a novel contribution to the literature, we provide certain three term recurrence formula with rational coefficients satisfied by Un(a)(x;q,j), which paves the way to establish an appealing generalization of the so-called J-fractions to the framework of Sobolev-type orthogonality.


Sign in / Sign up

Export Citation Format

Share Document