lad estimation
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 13 (6) ◽  
pp. 1159
Author(s):  
Hailan Jiang ◽  
Ronghai Hu ◽  
Guangjian Yan ◽  
Shiyu Cheng ◽  
Fan Li ◽  
...  

Leaf angle distribution (LAD) is an important attribute of forest canopy architecture and affects the solar radiation regime within the canopy. Terrestrial laser scanning (TLS) has been increasingly used in LAD estimation. The point clouds data suffer from the occlusion effect, which leads to incomplete scanning and depends on measurement strategies such as the number of scans and scanner location. Evaluating these factors is important to understand how to improve LAD, which is still lacking. Here, we introduce an easy way of estimating the LAD using open source software. Importantly, the influence of the occlusion effect on the LAD was evaluated by combining the proposed complete point clouds (CPCs) with the simulated data of 3D tree models of Aspen, Pin Oak and White Oak. We analyzed the effects of the point density, the number of scans and the scanner height on the LAD and G-function. Results show that: (1) the CPC can be used to evaluate the TLS-based normal vector reconstruction accuracy without an occlusion effect; (2) the accuracy is slightly affected by the normal vector reconstruction method and is greatly affected by the point density and the occlusion effect. The higher the point density (with a number of points per unit leaf area of 0.2 cm−2 to 27 cm−2 tested), the better the result is; (3) the performance is more sensitive to the scanner location than the number of scans. Increasing the scanner height improves LAD estimation, which has not been seriously considered in previous studies. It is worth noting that relatively tall trees suffer from a more severe occlusion effect, which deserves further attention in further study.


2019 ◽  
Vol 11 (13) ◽  
pp. 1580 ◽  
Author(s):  
François Pimont ◽  
Maxime Soma ◽  
Jean-Luc Dupuy

The spatial distribution of Leaf Area Density (LAD) in a tree canopy has fundamental functions in ecosystems. It can be measured through a variety of methods, including voxel-based methods applied to LiDAR point clouds. A theoretical study recently compared the numerical errors of these methods and showed that the bias-corrected Maximum Likelihood Estimator was the most efficient. However, it ignored (i) wood volumes, (ii) vegetation sub-grid clumping, (iii) the instrument effective footprint, and (iv) was limited to a single viewpoint. In practice, retrieving LAD is not straightforward, because vegetation is not randomly distributed in sub-grids, beams are divergent, and forestry plots are sampled from more than one viewpoint to mitigate occlusion. In the present article, we extend the previous formulation to (i) account for both wood volumes and hits, (ii) rigorously include correction terms for vegetation and instrument characteristics, and (iii) integrate multiview data. Two numerical experiments showed that the new approach entailed reduction of bias and errors, especially in the presence of wood volumes or when multiview data are available for poorly-explored volumes. In addition to its conciseness, completeness, and efficiency, this new formulation can be applied to multiview TLS—and also potentially to UAV LiDAR scanning—to reduce errors in LAD estimation.


Sign in / Sign up

Export Citation Format

Share Document