linear genetic programming
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 3)

H-INDEX

23
(FIVE YEARS 0)

2021 ◽  
Author(s):  
◽  
Carlton Downey

<p>Linear Genetic Programming (LGP) is a powerful problem-solving technique, but one with several significant weaknesses. LGP programs consist of a linear sequence of instructions, where each instruction may reuse previously computed results. This structure makes LGP programs compact and powerful, however it also introduces the problem of instruction dependencies. The notion of instruction dependencies expresses the concept that certain instructions rely on other instructions. Instruction dependencies are often disrupted during crossover or mutation when one or more instructions undergo modification. This disruption can cause disproportionately large changes in program output resulting in non-viable offspring and poor algorithm performance. Motivated by biological inspiration and the issue of code disruption, we develop a new form of LGP called Parallel LGP (PLGP). PLGP programs consist of n lists of instructions. These lists are executed in parallel, and the resulting vectors are summed to produce the overall program output. PLGP limits the disruptive effects of crossover and mutation, which allows PLGP to significantly outperform regular LGP. We examine the PLGP architecture and determine that large PLGP programs can be slow to converge. To improve the convergence time of large PLGP programs we develop a new form of PLGP called Cooperative Coevolution PLGP (CC PLGP). CC PLGP adapts the concept of cooperative coevolution to the PLGP architecture. CC PLGP optimizes all program components in parallel, allowing CC PLGP to converge significantly faster than conventional PLGP. We examine the CC PLGP architecture and determine that performance</p>



2021 ◽  
Author(s):  
◽  
Carlton Downey

<p>Linear Genetic Programming (LGP) is a powerful problem-solving technique, but one with several significant weaknesses. LGP programs consist of a linear sequence of instructions, where each instruction may reuse previously computed results. This structure makes LGP programs compact and powerful, however it also introduces the problem of instruction dependencies. The notion of instruction dependencies expresses the concept that certain instructions rely on other instructions. Instruction dependencies are often disrupted during crossover or mutation when one or more instructions undergo modification. This disruption can cause disproportionately large changes in program output resulting in non-viable offspring and poor algorithm performance. Motivated by biological inspiration and the issue of code disruption, we develop a new form of LGP called Parallel LGP (PLGP). PLGP programs consist of n lists of instructions. These lists are executed in parallel, and the resulting vectors are summed to produce the overall program output. PLGP limits the disruptive effects of crossover and mutation, which allows PLGP to significantly outperform regular LGP. We examine the PLGP architecture and determine that large PLGP programs can be slow to converge. To improve the convergence time of large PLGP programs we develop a new form of PLGP called Cooperative Coevolution PLGP (CC PLGP). CC PLGP adapts the concept of cooperative coevolution to the PLGP architecture. CC PLGP optimizes all program components in parallel, allowing CC PLGP to converge significantly faster than conventional PLGP. We examine the CC PLGP architecture and determine that performance</p>



2021 ◽  
pp. 1-23
Author(s):  
Léo Françoso Dal Piccol Sotto ◽  
Franz Rothlauf ◽  
Vinçcius Veloso de Melo ◽  
Márcio P. Basgalupp

Abstract Linear Genetic Programming (LGP) represents programs as sequences of instructions and has a Directed Acyclic Graph (DAG) dataflow. The results of instructions are stored in registers that can be used as arguments by other instructions. Instructions that are disconnected from the main part of the program are called non-effective instructions, or structural introns. They also appear in other DAG-based GP approaches like Cartesian Genetic Programming (CGP). This paper studies four hypotheses on the role of structural introns: non-effective instructions (1) serve as evolutionary memory, where evolved information is stored and later used in search, (2) preserve population diversity, (3) allow neutral search, where structural introns increase the number of neutral mutations and improve performance, and (4) serve as genetic material to enable program growth. We study different variants of LGP controlling the influence of introns for symbolic regression, classification, and digital circuits problems. We find that there is (1) evolved information in the non-effective instructions that can be reactivated and that (2) structural introns can promote programs with higher effective diversity. However, both effects have no influence on LGP search performance. On the other hand, allowing mutations to not only be applied to effective but also to noneffective instructions (3) increases the rate of neutral mutations and (4) contributes to program growth by making use of the genetic material available as structural introns. This comes along with a significant increase of LGP performance, which makes structural introns important for LGP.



2020 ◽  
Vol 37 (7) ◽  
pp. 2517-2537
Author(s):  
Mostafa Rezvani Sharif ◽  
Seyed Mohammad Reza Sadri Tabaei Zavareh

Purpose The shear strength of reinforced concrete (RC) columns under cyclic lateral loading is a crucial concern, particularly, in the seismic design of RC structures. Considering the costly procedure of testing methods for measuring the real value of the shear strength factor and the existence of several parameters impacting the system behavior, numerical modeling techniques have been very much appreciated by engineers and researchers. This study aims to propose a new model for estimation of the shear strength of cyclically loaded circular RC columns through a robust computational intelligence approach, namely, linear genetic programming (LGP). Design/methodology/approach LGP is a data-driven self-adaptive algorithm recently used for classification, pattern recognition and numerical modeling of engineering problems. A reliable database consisting of 64 experimental data is collected for the development of shear strength LGP models here. The obtained models are evaluated from both engineering and accuracy perspectives by means of several indicators and supplementary studies and the optimal model is presented for further purposes. Additionally, the capability of LGP is examined to be used as an alternative approach for the numerical analysis of engineering problems. Findings A new predictive model is proposed for the estimation of the shear strength of cyclically loaded circular RC columns using the LGP approach. To demonstrate the capability of the proposed model, the analysis results are compared to those obtained by some well-known models recommended in the existing literature. The results confirm the potential of the LGP approach for numerical analysis of engineering problems in addition to the fact that the obtained LGP model outperforms existing models in estimation and predictability. Originality/value This paper mainly represents the capability of the LGP approach as a robust alternative approach among existing analytical and numerical methods for modeling and analysis of relevant engineering approximation and estimation problems. The authors are confident that the shear strength model proposed can be used for design and pre-design aims. The authors also declare that they have no conflict of interest.



2019 ◽  
Vol 148 (6) ◽  
pp. 123-133
Author(s):  
Humberto Velasco Arellano ◽  
Martín Montes Rivera




Sign in / Sign up

Export Citation Format

Share Document