isosceles orthogonality
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 0)

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Bhuwan Prasad Ojha ◽  
Prakash Muni Bajracharya ◽  
Vishnu Narayan Mishra

This paper generalizes the special case of the Carlsson orthogonality in terms of the 2-HH norm in real normed linear space. Dragomir and Kikianty (2010) proved in their paper that the Pythagorean orthogonality is unique in any normed linear space, and isosceles orthogonality is unique if and only if the space is strictly convex. This paper deals with the complete proof of the uniqueness of the new orthogonality through the medium of the 2-HH norm. We also proved that the Birkhoff and Robert orthogonality via the 2-HH norm are equivalent, whenever the underlying space is a real inner-product space.


2019 ◽  
Vol 4 (4) ◽  
pp. 72-78
Author(s):  
Bhuwan Prasad Ojha ◽  
Prakash Muni Bajrayacharya

In an arbitrary normed space, though the norm not necessarily coming from the inner product space, the notion of orthogonality may be introduced in various ways as suggested by the mathematicians like R.C. James, B.D. Roberts, G. Birkhoff and S.O. Carlsson. We aim to explore the application of orthogonality in normed linear spaces in the best approximation. Hence it has already been proved that Birkhoff orthogonality implies best approximation and best approximation implies Birkhoff orthogonality. Additionally, it has been proved that in the case of ε -orthogonality, ε -best approximation implies ε -orthogonality and vice-versa. In this article we established relation between Pythagorean orthogonality and best approximation as well as isosceles orthogonality and ε -best approximation in normed space.


Filomat ◽  
2016 ◽  
Vol 30 (10) ◽  
pp. 2761-2770 ◽  
Author(s):  
Hiroyasu Mizuguchi

The notion of orthogonality for vectors in inner product spaces is simple, interesting and fruitful. When moving to normed spaces, we have many possibilities to extend this notion. We consider Birkhoff orthogonality and isosceles orthogonality, which are the most used notions of orthogonality. In 2006, Ji and Wu introduced a geometric constant D(X) to give a quantitative characterization of the difference between these two orthogonality types. However, this constant was considered only in the unit sphere SX of the normed space X. In this paper, we introduce a new geometric constant IB(X) to measure the difference between Birkhoff and isosceles orthogonalities in the entire normed space X. To consider the difference between these orthogonalities, we also treat constant BI(X).


2014 ◽  
Vol 2014 ◽  
pp. 1-3 ◽  
Author(s):  
Chan He ◽  
Dan Wang

Inspired by the definition of homogeneous direction of isosceles orthogonality, we introduce the notion of almost homogeneous direction of isosceles orthogonality and show that, surprisingly, these two notions coincide. Several known characterizations of inner products are improved.


Filomat ◽  
2012 ◽  
Vol 26 (4) ◽  
pp. 859-870 ◽  
Author(s):  
Eder Kikianty ◽  
Sever Dragomir

In an inner product space, two vectors are orthogonal if their inner product is zero. In a normed space, numerous notions of orthogonality have been introduced via equivalent propositions to the usual orthogonality, e.g. orthogonal vectors satisfy the Pythagorean law. In 2010, Kikianty and Dragomir [9] introduced the p-HH-norms (1 ? p < ?) on the Cartesian square of a normed space. Some notions of orthogonality have been introduced by utilizing the 2-HH-norm [10]. These notions of orthogonality are closely related to the classical Pythagorean orthogonality and Isosceles orthogonality. In this paper, a Carlsson type orthogonality in terms of the 2-HH-norm is considered, which generalizes the previous definitions. The main properties of this orthogonality are studied and some useful consequences are obtained. These consequences include characterizations of inner product space.


Sign in / Sign up

Export Citation Format

Share Document